Mercurial > hg > octave-nkf
view scripts/control/rlocus.m @ 3240:2e74d8aa1a20
[project @ 1999-04-07 18:33:23 by jwe]
author | jwe |
---|---|
date | Wed, 07 Apr 1999 18:34:20 +0000 |
parents | 041ea33fbbf4 |
children | 6dd06d525de6 |
line wrap: on
line source
# Copyright (C) 1996 A. Scottedward Hodel # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any # later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, write to the Free # Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. function [rldata,k_break,rlpol,gvec,real_ax_pts] = rlocus(sys,increment,min_k,max_k) # [rldata,k_break,rlpol,gvec,real_ax_pts] = rlocus(sys,increment,min_k,max_k) # Displays root locus plot of the specified SISO system. # # ----- --- -------- # --->| + |---|k|---->| SISO |-----------> # ----- --- -------- | # - ^ | # |_____________________________| # #inputs: sys = system data structure # min_k, max_k,increment: minimum, maximum values of k and # the increment used in computing gain values # outputs: plots the root locus to the screen. # rldata: Data points plotted column 1: real values, column 2: imaginary # values) # k_break: gains for real axis break points. # rlpol: complex vector: column ii of pol is the set of poles # corresponding to to gain gvec(ii) # gvec: gains used to compute root locus # real_ax_pts: breakpoints of the real axis locus. # Convert the input to a transfer function if necessary # Written by Clem and Tenison # Updated by Kristi McGowan July 1996 for intelligent gain selection # Updated by John Ingram July 1996 for systems if (nargin < 1) | (nargin > 4) usage("rlocus(sys[,inc,mink,maxk])"); endif [num,den] = sys2tf(sys); # extract numerator/denom polyomials lnum = length(num); lden = length(den); if(lden < 2) error(sprintf("length of derivative=%d, doesn't make sense",lden)); elseif(lnum == 1) num = [0, num]; # so that derivative is shortened by one endif # root locus plot axis limits # compute real axis locus breakpoints # compute the derivative of the numerator and the denominator dern=polyderiv(num); derd=polyderiv(den); # compute real axis breakpoints real_ax_pol = conv(den,dern) - conv(num,derd); real_ax_pts = roots(real_ax_pol); if(isempty(real_ax_pts)) k_break = []; maxk = 0; else # compute gains that achieve the breakpoints c1 = polyval(num,real_ax_pts); c2 = polyval(den,real_ax_pts); k_break = -real(c2 ./ c1); maxk = max(max(k_break,0)); endif # compute gain ranges based on computed K values if(maxk == 0) maxk = 1; else maxk = 1.1*maxk; endif mink = 0; ngain = 20; # check for input arguments: if (nargin > 2) mink = min_k; endif if (nargin > 3) maxk = max_k; endif if (nargin > 1) if(increment <= 0) error("increment must be positive"); else ngain = (maxk-mink)/increment; endif endif # vector of gains ngain = max(3,ngain); gvec = linspace(mink,maxk,ngain); # Find the open loop zeros and the initial poles rlzer = roots(num); # update num to be the same length as den lnum = length(num); if(lnum < lden) num = [zeros(1,lden - lnum),num]; endif # compute preliminary pole sets nroots = lden-1; for ii=1:ngain gain = gvec(ii); rlpol(1:nroots,ii) = vec(sortcom(roots(den + gain*num))); endfor # compute axis limits (isolate asymptotes) olpol = roots(den); real_axdat = union(real(rlzer), real(union(olpol,real_ax_pts)) ); rmin = min(real_axdat); rmax = max(real_axdat); rlpolv = [vec(rlpol); vec(real_axdat)]; idx = find(real(rlpolv) >= rmin & real(rlpolv) <= rmax); axlim = axis2dlim([real(rlpolv(idx)),imag(rlpolv(idx))]); xmin = axlim(1); xmax = axlim(2); # set smoothing tolerance per axis limits smtol = 0.01*max(abs(axlim)); # smooth poles if necessary, up to maximum of 1000 gain points # only smooth points within the axis limit window # smoothing done if max_k not specified as a command argument done=(nargin == 4); # perform a smoothness check while((!done) & ngain < 1000) done = 1 ; # assume done dp = abs(diff(rlpol'))'; maxd = max(dp); # search for poles in the real axis limits whose neighbors are distant idx = find(maxd > smtol); for ii=1:length(idx) i1 = idx(ii); g1 = gvec(i1); p1 = rlpol(:,i1); i2 = idx(ii)+1; g2 = gvec(i2); p2 = rlpol(:,i2); # isolate poles in p1, p2 that are inside the real axis limits bidx = find( (real(p1) >= xmin & real(p1) <= xmax) ... | (real(p2) >= xmin & real(p2) <= xmax) ); if(!isempty(bidx)) p1 = p1(bidx); p2 = p2(bidx); if( max(abs(p2-p1)) > smtol) newg = linspace(g1,g2,5); newg = newg(2:4); if(isempty(newg)) printf("rlocus: empty newg") g1 g2 i1 i2 idx_i1 = idx(ii) gvec_i1 = gvec(i1:i2) delta_vec_i1 = diff(gvec(i1:i2)) prompt endif gvec = [gvec,newg]; done = 0; # need to process new gains endif endif endfor # process new gain values ngain1 = length(gvec); for ii=(ngain+1):ngain1 gain = gvec(ii); rlpol(1:nroots,ii) = vec(sortcom(roots(den + gain*num))); endfor [gvec,idx] = sort(gvec); rlpol = rlpol(:,idx); ngain = length(gvec); endwhile # Plot the data if(nargout == 0) rlpolv = vec(rlpol); idx = find(real(rlpolv) >= xmin & real(rlpolv) <= xmax); axdata = [real(rlpolv(idx)),imag(rlpolv(idx))]; axlim = axis2dlim(axdata); axlim(1:2) = [xmin, xmax]; gset nologscale xy; grid("on"); rldata = [real(rlpolv), imag(rlpolv) ]; axis(axlim); [stn,inname,outname] = sysgetsignals(sys); xlabel(sprintf("Root locus from %s to %s, gain=[%f,%f]: Real axis", ... nth(inname,1),nth(outname,1),gvec(1),gvec(ngain))); ylabel("Imag. axis"); plot(real(rlpolv),imag(rlpolv),".1;locus points;", ... real(olpol),imag(olpol),"x2;open loop poles;", ... real(rlzer),imag(rlzer),"o3;zeros;"); rldata = []; endif endfunction