Mercurial > hg > octave-nkf
view scripts/plot/isosurface.m @ 15536:2e8eb9ac43a5 stable rc-3-6-4-0
3.6.4-rc0 release candidate
* configure.ac (AC_INIT): Version is now 3.6.2-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-05-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 17 Oct 2012 10:05:44 -0400 |
parents | 4d917a6a858b |
children | ce2b59a6d0e5 |
line wrap: on
line source
## Copyright (C) 2009-2012 Martin Helm ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{fv}] =} isosurface (@var{val}, @var{iso}) ## @deftypefnx {Function File} {[@var{fv}] =} isosurface (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}) ## @deftypefnx {Function File} {[@var{fv}] =} isosurface (@dots{}, "noshare", "verbose") ## @deftypefnx {Function File} {[@var{fvc}] =} isosurface (@dots{}, @var{col}) ## @deftypefnx {Function File} {[@var{f}, @var{v}] =} isosurface (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}) ## @deftypefnx {Function File} {[@var{f}, @var{v}, @var{c}] =} isosurface (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}, @var{col}) ## @deftypefnx {Function File} {} isosurface (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}, @var{col}, @var{opt}) ## ## If called with one output argument and the first input argument ## @var{val} is a three-dimensional array that contains the data of an ## isosurface geometry and the second input argument @var{iso} keeps the ## isovalue as a scalar value then return a structure array @var{fv} ## that contains the fields @var{Faces} and @var{Vertices} at computed ## points @command{[x, y, z] = meshgrid (1:l, 1:m, 1:n)}. The output ## argument @var{fv} can directly be taken as an input argument for the ## @command{patch} function. ## ## If called with further input arguments @var{x}, @var{y} and @var{z} ## which are three--dimensional arrays with the same size than @var{val} ## then the volume data is taken at those given points. ## ## The string input argument "noshare" is only for compatibility and ## has no effect. If given the string input argument ## "verbose" then print messages to the command line interface about the ## current progress. ## ## If called with the input argument @var{col} which is a ## three-dimensional array of the same size than @var{val} then take ## those values for the interpolation of coloring the isosurface ## geometry. Add the field @var{FaceVertexCData} to the structure ## array @var{fv}. ## ## If called with two or three output arguments then return the ## information about the faces @var{f}, vertices @var{v} and color data ## @var{c} as seperate arrays instead of a single structure array. ## ## If called with no output argument then directly process the ## isosurface geometry with the @command{patch} command. ## ## For example, ## ## @example ## @group ## [x, y, z] = meshgrid (1:5, 1:5, 1:5); ## val = rand (5, 5, 5); ## isosurface (x, y, z, val, .5); ## @end group ## @end example ## ## @noindent ## will directly draw a random isosurface geometry in a graphics window. ## Another example for an isosurface geometry with different additional ## coloring ## @c Set example in small font to prevent overfull line ## ## @smallexample ## N = 15; # Increase number of vertices in each direction ## iso = .4; # Change isovalue to .1 to display a sphere ## lin = linspace (0, 2, N); ## [x, y, z] = meshgrid (lin, lin, lin); ## c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2); ## figure (); # Open another figure window ## ## subplot (2,2,1); view (-38, 20); ## [f, v] = isosurface (x, y, z, c, iso); ## p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none"); ## set (gca, "PlotBoxAspectRatioMode", "manual", ... ## "PlotBoxAspectRatio", [1 1 1]); ## # set (p, "FaceColor", "green", "FaceLighting", "phong"); ## # light ("Position", [1 1 5]); # Available with the JHandles package ## ## subplot (2,2,2); view (-38, 20); ## p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue"); ## set (gca, "PlotBoxAspectRatioMode", "manual", ... ## "PlotBoxAspectRatio", [1 1 1]); ## # set (p, "FaceColor", "none", "FaceLighting", "phong"); ## # light ("Position", [1 1 5]); ## ## subplot (2,2,3); view (-38, 20); ## [f, v, c] = isosurface (x, y, z, c, iso, y); ## p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ... ## "FaceColor", "interp", "EdgeColor", "none"); ## set (gca, "PlotBoxAspectRatioMode", "manual", ... ## "PlotBoxAspectRatio", [1 1 1]); ## # set (p, "FaceLighting", "phong"); ## # light ("Position", [1 1 5]); ## ## subplot (2,2,4); view (-38, 20); ## p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ... ## "FaceColor", "interp", "EdgeColor", "blue"); ## set (gca, "PlotBoxAspectRatioMode", "manual", ... ## "PlotBoxAspectRatio", [1 1 1]); ## # set (p, "FaceLighting", "phong"); ## # light ("Position", [1 1 5]); ## @end smallexample ## ## @seealso{isonormals, isocolors} ## @end deftypefn ## Author: Martin Helm <martin@mhelm.de> function varargout = isosurface(varargin) if (nargin < 2 || nargin > 8 || nargout > 3) print_usage (); endif calc_colors = false; f = v = c = []; verbose = false; noshare = false; if (nargin >= 5) x = varargin{1}; y = varargin{2}; z = varargin{3}; val = varargin{4}; iso = varargin{5}; if (nargin >= 6 && ismatrix (varargin{6})) colors = varargin{6}; calc_colors = true; endif else val = varargin{1}; [n2, n1, n3] = size (val); [x, y, z] = meshgrid (1:n1, 1:n2, 1:n3); iso = varargin{2}; if (nargin >= 3 && ismatrix (varargin{3})) colors = varargin{3}; calc_colors = true; endif endif if (calc_colors) if (nargout == 2) warning ( "Colors will be calculated, but you did not specify an output argument for it!" ); endif [fvc.faces, fvc.vertices, fvc.facevertexcdata] = __marching_cube__ (x, y, z, val, iso, colors); else [fvc.faces, fvc.vertices] = __marching_cube__ (x, y, z, val, iso); endif if (isempty (fvc.vertices) || isempty (fvc.faces)) warning ( "The resulting triangulation is empty" ); endif switch (nargout) case 0 ## plot the calculated surface newplot (); if (calc_colors) pa = patch ("Faces", fvc.faces, "Vertices", fvc.vertices, "FaceVertexCData", fvc.facevertexcdata, "FaceColor", "flat", "EdgeColor", "none"); else pa = patch ("Faces", fvc.faces, "Vertices", fvc.vertices, "FaceColor", "g", "EdgeColor", "k"); endif if (! ishold ()) set (gca(), "view", [-37.5, 30], "xgrid", "on", "ygrid", "on", "zgrid", "on"); endif case 1 varargout = {fvc}; case 2 varargout = {fvc.faces, fvc.vertices}; case 3 varargout = {fvc.faces, fvc.vertices, fvc.facevertexcdata}; otherwise print_usage (); endswitch endfunction %!shared x, y, z, val %! [x, y, z] = meshgrid (0:1, 0:1, 0:1); ## Points for single %! val = [0, 0; 0, 0]; ## cube and a 3--dim %! val(:,:,2) = [0, 0; 1, 0]; ## array of values %!test %! fv = isosurface (x, y, z, val, 0.3); %! assert (isfield (fv, "vertices"), true); %! assert (isfield (fv, "faces"), true); %! assert (size (fv.vertices), [3 3]); %! assert (size (fv.faces), [1 3]); %!test %! fvc = isosurface (x, y, z, val, .3, y); %! assert (isfield (fvc, "vertices"), true); %! assert (isfield (fvc, "faces"), true); %! assert (isfield (fvc, "facevertexcdata"), true); %! assert (size (fvc.vertices), [3 3]); %! assert (size (fvc.faces), [1 3]); %! assert (size (fvc.facevertexcdata), [3 1]); %!test %! [f, v] = isosurface (x, y, z, val, .3); %! assert (size (f), [1 3]); %! assert (size (v), [3 3]); %!test %! [f, v, c] = isosurface (x, y, z, val, .3, y); %! assert (size (f), [1 3]); %! assert (size (v), [3 3]); %! assert (size (c), [3 1]); %!demo %! clf %! [x,y,z] = meshgrid(-2:0.5:2, -2:0.5:2, -2:0.5:2); %! v = x.^2 + y.^2 + z.^2; %! isosurface (x, y, z, v, 1)