Mercurial > hg > octave-nkf
view scripts/signal/fftconv.m @ 15536:2e8eb9ac43a5 stable rc-3-6-4-0
3.6.4-rc0 release candidate
* configure.ac (AC_INIT): Version is now 3.6.2-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-05-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 17 Oct 2012 10:05:44 -0400 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 1994-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} fftconv (@var{x}, @var{y}) ## @deftypefnx {Function File} {} fftconv (@var{x}, @var{y}, @var{n}) ## Convolve two vectors using the FFT for computation. ## ## @code{c = fftconv (@var{x}, @var{y})} returns a vector of length equal to ## @code{length (@var{x}) + length (@var{y}) - 1}. ## If @var{x} and @var{y} are the coefficient vectors of two polynomials, the ## returned value is the coefficient vector of the product polynomial. ## ## The computation uses the FFT by calling the function @code{fftfilt}. If ## the optional argument @var{n} is specified, an N-point FFT is used. ## @seealso{deconv, conv, conv2} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 3 September 1994 ## Adapted-By: jwe function c = fftconv (x, y, n) if (nargin < 2 || nargin > 3) print_usage (); endif if (! (isvector (x) && isvector (y))) error ("fftconv: both A and B must be vectors"); endif la = length (x); lb = length (y); if ((la == 1) || (lb == 1)) c = x * y; else lc = la + lb - 1; x(lc) = 0; y(lc) = 0; if (nargin == 2) c = fftfilt (x, y); else if (! isscalar (n)) error ("fftconv: N must be a scalar"); endif c = fftfilt (x, y, n); endif endif endfunction %% FIXME: Borrow tests from conv.m. May need a tolerance on the assert comparison %!test %! x = ones(3,1); %! y = ones(1,3); %! b = 2; %! c = 3; %! assert (fftconv (x, x), [1; 2; 3; 2; 1], 5*eps); %! assert (fftconv (y, y), [1, 2, 3, 2, 1], 5*eps); %! assert (fftconv (x, y), [1, 2, 3, 2, 1], 5*eps); %! assert (fftconv (y, x), [1; 2; 3; 2; 1], 5*eps); %! assert (fftconv (c, x), [3; 3; 3], 5*eps); %! assert (fftconv (c, y), [3, 3, 3], 5*eps); %! assert (fftconv (x, c), [3; 3; 3], 5*eps); %! assert (fftconv (y, c), [3, 3, 3], 5*eps); %! assert (fftconv (b, c), 6, 5*eps); %!test %! a = 1:10; %! b = 1:3; %! assert (size(conv(a,b)), [1, numel(a)+numel(b)-1]) %! assert (size(conv(b,a)), [1, numel(a)+numel(b)-1]) %! a = (1:10).'; %! b = 1:3; %! assert (size(conv(a,b)), [numel(a)+numel(b)-1, 1]) %! assert (size(conv(b,a)), [numel(a)+numel(b)-1, 1]) %!test %! a = 1:10; %! b = (1:3).'; %! assert (size(conv(a,b)), [1, numel(a)+numel(b)-1]) %! assert (size(conv(b,a)), [1, numel(a)+numel(b)-1]) %% Test input validation %!error fftconv (1); %!error fftconv (1,2,3,4); %!error fftconv ([1, 2; 3, 4], 3); %!error fftconv (2, []); %!error fftconv ([1,1], [2,2] , [3, 4]);