Mercurial > hg > octave-nkf
view scripts/sparse/cgs.m @ 15536:2e8eb9ac43a5 stable rc-3-6-4-0
3.6.4-rc0 release candidate
* configure.ac (AC_INIT): Version is now 3.6.2-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-05-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 17 Oct 2012 10:05:44 -0400 |
parents | 72c96de7a403 |
children | 11949c9795a0 |
line wrap: on
line source
## Copyright (C) 2008-2012 Radek Salac ## Copyright (C) 2012 Carlo de Falco ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## ## @deftypefn {Function File} {@var{x} =} cgs (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) ## @deftypefnx {Function File} {@var{x} =} cgs (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} cgs (@var{A}, @var{b}, @dots{}) ## Solve @code{A x = b}, where @var{A} is a square matrix, using the ## Conjugate Gradients Squared method. ## ## @itemize @minus ## @item @var{rtol} is the relative tolerance, if not given or set to [] ## the default value 1e-6 is used. ## ## @item @var{maxit} the maximum number of outer iterations, if not ## given or set to [] the default value @code{min (20, numel (b))} is ## used. ## ## @item @var{x0} the initial guess, if not given or set to [] the ## default value @code{zeros (size (b))} is used. ## @end itemize ## ## @var{A} can be passed as a matrix or as a function handle or ## inline function @code{f} such that @code{f(x) = A*x}. ## ## The preconditioner @var{P} is given as @code{P = M1 * M2}. ## Both @var{M1} and @var{M2} can be passed as a matrix or as a function ## handle or inline function @code{g} such that @code{g(x) = M1 \ x} or ## @code{g(x) = M2 \ x}. ## ## If called with more than one output parameter ## ## @itemize @minus ## @item @var{flag} indicates the exit status: ## @itemize @minus ## @item 0: iteration converged to the within the chosen tolerance ## ## @item 1: the maximum number of iterations was reached before convergence ## ## @item 3: the algorithm reached stagnation ## @end itemize ## (the value 2 is unused but skipped for compatibility). ## ## @item @var{relres} is the final value of the relative residual. ## ## @item @var{iter} is the number of iterations performed. ## ## @item @var{resvec} is a vector containing the relative residual at ## each iteration. ## @end itemize ## ## @seealso{pcg, bicgstab, bicg, gmres} ## @end deftypefn function [x, flag, relres, iter, resvec] = cgs (A, b, tol, maxit, M1, M2, x0) if (nargin >= 2 && nargin <= 7 && isvector (full (b))) if (ischar (A)) A = str2func (A); elseif (ismatrix (A)) Ax = @(x) A * x; elseif (isa (A, "function_handle")) Ax = @(x) feval (A, x); else error (["cgs: first argument is expected to "... "be a function or a square matrix"]); endif if (nargin < 3 || isempty (tol)) tol = 1e-6; endif if (nargin < 4 || isempty (maxit)) maxit = min (rows (b), 20); endif if (nargin < 5 || isempty (M1)) M1m1x = @(x) x; elseif (ischar (M1)) M1m1x = str2func (M1); elseif (ismatrix (M1)) M1m1x = @(x) M1 \ x; elseif (isa (M1, "function_handle")) M1m1x = @(x) feval (M1, x); else error ("cgs: preconditioner is expected to be a function or matrix"); endif if (nargin < 6 || isempty (M2)) M2m1x = @(x) x; elseif (ischar (M2)) M2m1x = str2func (M2); elseif (ismatrix (M2)) M2m1x = @(x) M2 \ x; elseif (isa (M2, "function_handle")) M2m1x = @(x) feval (M2, x); else error ("cgs: preconditioner is expected to be a function or matrix"); endif precon = @(x) M2m1x (M1m1x (x)); if (nargin < 7 || isempty (x0)) x0 = zeros (size (b)); endif x = x0; res = b - Ax (x); norm_b = norm (b); ## Vector of the residual norms for each iteration. resvec = norm (res) / norm_b; ro = 0; ## Default behavior we don't reach tolerance tol within maxit iterations. flag = 1; for iter = 1:maxit z = precon (res); ## Cache. ro_old = ro; ro = res' * z; if (iter == 1) p = z; else beta = ro / ro_old; p = z + beta * p; endif ## Cache. q = Ax (p); alpha = ro / (p' * q); x = x + alpha * p; res = res - alpha * q; relres = norm (res) / norm_b; resvec = [resvec; relres]; if (relres <= tol) ## We reach tolerance tol within maxit iterations. flag = 0; break elseif (resvec (end) == resvec (end - 1)) ## The method stagnates. flag = 3; break endif endfor if (nargout < 1) if (flag == 0) printf ("cgs converged at iteration %i to a solution with relative residual %e\n", iter, relres); elseif (flag == 3) printf (["cgs stopped at iteration %i without converging to the desired tolerance %e\n", "because the method stagnated.\n", "The iterate returned (number %i) has relative residual %e\n"], iter, tol, iter, relres); else printf (["cgs stopped at iteration %i without converging to the desired tolerance %e\n", "because the maximum number of iterations was reached.\n", "The iterate returned (number %i) has relative residual %e\n"], iter, tol, iter, relres); endif endif else print_usage (); endif endfunction %!demo %! % Solve system of A*x=b %! A=[5 -1 3;-1 2 -2;3 -2 3] %! b=[7;-1;4] %! [a,b,c,d,e]=cgs(A,b) %!shared A, b, n, M %! %!test %! n = 100; %! A = spdiags ([-ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n); %! b = sum (A, 2); %! tol = 1e-8; %! maxit = 1000; %! M = 4*eye (n); %! [x, flag, relres, iter, resvec] = cgs (A, b, tol, maxit, M); %! assert (x, ones (size (b)), 1e-7); %! %!test %! tol = 1e-8; %! maxit = 15; %! %! [x, flag, relres, iter, resvec] = cgs (@(x) A * x, b, tol, maxit, M); %! assert (x, ones (size (b)), 1e-7); %!test %! n = 100; %! tol = 1e-8; %! a = sprand (n, n, .1); %! A = a'*a + 100 * eye (n); %! b = sum (A, 2); %! [x, flag, relres, iter, resvec] = cgs (A, b, tol, [], diag (diag (A))); %! assert (x, ones (size (b)), 1e-7);