Mercurial > hg > octave-nkf
view scripts/strings/dec2base.m @ 20720:315b7d51d6c8
randi.m: Display warnings in case of range exceedings.
author | Kai T. Ohlhus <k.ohlhus@gmail.com> |
---|---|
date | Wed, 23 Sep 2015 15:31:34 +0200 |
parents | df437a52bcaf |
children |
line wrap: on
line source
## Copyright (C) 2000-2015 Daniel Calvelo ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} dec2base (@var{d}, @var{base}) ## @deftypefnx {Function File} {} dec2base (@var{d}, @var{base}, @var{len}) ## Return a string of symbols in base @var{base} corresponding to the ## non-negative integer @var{d}. ## ## @example ## @group ## dec2base (123, 3) ## @result{} "11120" ## @end group ## @end example ## ## If @var{d} is a matrix or cell array, return a string matrix with one row ## per element in @var{d}, padded with leading zeros to the width of the ## largest value. ## ## If @var{base} is a string then the characters of @var{base} are used as ## the symbols for the digits of @var{d}. Space (' ') may not be used as a ## symbol. ## ## @example ## @group ## dec2base (123, "aei") ## @result{} "eeeia" ## @end group ## @end example ## ## The optional third argument, @var{len}, specifies the minimum number of ## digits in the result. ## @seealso{base2dec, dec2bin, dec2hex} ## @end deftypefn ## Author: Daniel Calvelo <dcalvelo@yahoo.com> ## Adapted-by: Paul Kienzle <pkienzle@kienzle.powernet.co.uk> function retval = dec2base (d, base, len) if (nargin < 2 || nargin > 3) print_usage (); endif if (iscell (d)) d = cell2mat (d); endif ## Create column vector for algorithm if (! iscolumn (d)) d = d(:); endif ## Treat logical as numeric for compatibility with ML if (islogical (d)) d = double (d); elseif (! isnumeric (d) || iscomplex (d) || any (d < 0 | d != fix (d))) error ("dec2base: input must be real non-negative integers"); endif symbols = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; if (ischar (base)) symbols = base; base = length (symbols); if (length (unique (symbols)) != base) error ("dec2base: symbols representing digits must be unique"); endif if (any (isspace (symbols))) error ("dec2base: whitespace characters are not valid symbols"); endif elseif (! isscalar (base)) error ("dec2base: cannot convert from several bases at once"); elseif (base < 2 || base > length (symbols)) error ("dec2base: BASE must be between 2 and 36, or a string of symbols"); endif ## determine number of digits required to handle all numbers, can overflow ## by 1 digit max_len = round (log (max (max (d(:)), 1)) / log (base)) + 1; if (nargin == 3) max_len = max (max_len, len); endif ## determine digits for each number digits = zeros (length (d), max_len); for k = max_len:-1:1 digits(:,k) = mod (d, base); d = round ((d - digits(:,k)) / base); endfor ## convert digits to symbols retval = reshape (symbols(digits+1), size (digits)); ## Check if the first element is the zero symbol. It seems possible ## that LEN is provided, and is less than the computed MAX_LEN and ## MAX_LEN is computed to be one larger than necessary, so we would ## have a leading zero to remove. But if LEN >= MAX_LEN, we should ## not remove any leading zeros. if ((nargin == 2 || (nargin == 3 && max_len > len)) && length (retval) != 1 && ! any (retval(:,1) != symbols(1))) retval = retval(:,2:end); endif endfunction %!test %! s0 = ""; %! for n = 1:13 %! for b = 2:16 %! pp = dec2base (b^n+1, b); %! assert (dec2base (b^n, b), ['1',s0,'0']); %! assert (dec2base (b^n+1, b), ['1',s0,'1']); %! endfor %! s0 = [s0,'0']; %! endfor %!test %! digits = "0123456789ABCDEF"; %! for n = 1:13 %! for b = 2:16 %! pm = dec2base (b^n-1, b); %! assert (length (pm), n); %! assert (all (pm == digits(b))); %! endfor %! endfor %!test %! for b = 2:16 %! assert (dec2base (0, b), '0'); %! endfor %!assert (dec2base (0, 2, 4), "0000") %!assert (dec2base (2^51-1, 2), ... %! "111111111111111111111111111111111111111111111111111") %!assert (dec2base (uint64 (2)^63-1, 16), "7FFFFFFFFFFFFFFF") %!assert (dec2base ([1, 2; 3, 4], 2, 3), ["001"; "011"; "010"; "100"]) %!assert (dec2base ({1, 2; 3, 4}, 2, 3), ["001"; "011"; "010"; "100"]) %!test %! a = 0:3; %! assert (dec2base (!a, 2, 1), ["1"; "0"; "0"; "0"]) ## Test input validation %!error dec2base () %!error dec2base (1) %!error dec2base (1, 2, 3, 4) %!error dec2base ("A") %!error dec2base (2i) %!error dec2base (-1) %!error dec2base (1.1) %!error dec2base (1, "ABA") %!error dec2base (1, "A B") %!error dec2base (1, ones (2)) %!error dec2base (1, 1) %!error dec2base (1, 37)