Mercurial > hg > octave-nkf
view libinterp/corefcn/mappers.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | 4e7f12a763cd |
children |
line wrap: on
line source
/* Copyright (C) 1993-2015 John W. Eaton Copyright (C) 2009-2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cctype> #include <cfloat> #include "lo-ieee.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "variables.h" DEFUN (abs, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} abs (@var{z})\n\ Compute the magnitude of @var{z}.\n\ \n\ The magnitude is defined as\n\ @tex\n\ $|z| = \\sqrt{x^2 + y^2}$.\n\ @end tex\n\ @ifnottex\n\ |@var{z}| = @code{sqrt (x^2 + y^2)}.\n\ @end ifnottex\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ abs (3 + 4i)\n\ @result{} 5\n\ @end group\n\ @end example\n\ @seealso{arg}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).abs (); else print_usage (); return retval; } /* %!assert (abs (1), 1) %!assert (abs (-3.5), 3.5) %!assert (abs (3+4i), 5) %!assert (abs (3-4i), 5) %!assert (abs ([1.1, 3i; 3+4i, -3-4i]), [1.1, 3; 5, 5]) %!assert (abs (single (1)), single (1)) %!assert (abs (single (-3.5)), single (3.5)) %!assert (abs (single (3+4i)), single (5)) %!assert (abs (single (3-4i)), single (5)) %!assert (abs (single ([1.1, 3i; 3+4i, -3-4i])), single ([1.1, 3; 5, 5])) %!error abs () %!error abs (1, 2) */ DEFUN (acos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acos (@var{x})\n\ Compute the inverse cosine in radians for each element of @var{x}.\n\ @seealso{cos, acosd}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acos (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! x = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]; %! v = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! assert (acos (x), v, sqrt (eps)); %!test %! x = single ([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]); %! v = single ([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! assert (acos (x), v, sqrt (eps ("single"))); ## Test values on either side of branch cut %!test %! rval = 0; %! ival = 1.31695789692481635; %! obs = acos ([2, 2-i*eps, 2+i*eps]); %! exp = [rval + ival*i, rval + ival*i, rval - ival*i]; %! assert (obs, exp, 2*eps); %! rval = pi; %! obs = acos ([-2, -2-i*eps, -2+i*eps]); %! exp = [rval - ival*i, rval + ival*i, rval - ival*i]; %! assert (obs, exp, 2*eps); %! assert (acos ([2 0]), [ival*i, pi/2], 2*eps); %! assert (acos ([2 0i]), [ival*i, pi/2], 2*eps); %!error acos () %!error acos (1, 2) */ DEFUN (acosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acosh (@var{x})\n\ Compute the inverse hyperbolic cosine for each element of @var{x}.\n\ @seealso{cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acosh (); else print_usage (); return retval; } /* %!test %! x = [1, 0, -1, 0]; %! v = [0, pi/2*i, pi*i, pi/2*i]; %! assert (acosh (x), v, sqrt (eps)); %!test %! re = 2.99822295029797; %! im = pi/2; %! assert (acosh (-10i), re - i*im); %!test %! x = single ([1, 0, -1, 0]); %! v = single ([0, pi/2*i, pi*i, pi/2*i]); %! assert (acosh (x), v, sqrt (eps ("single"))); %!test %! re = single (2.99822295029797); %! im = single (pi/2); %! assert (acosh (single (10i)), re + i*im, 5*eps ("single")); %! assert (acosh (single (-10i)), re - i*im, 5*eps ("single")); %!error acosh () %!error acosh (1, 2) */ DEFUN (angle, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} angle (@var{z})\n\ See @code{arg}.\n\ @seealso{arg}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } DEFUN (arg, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} arg (@var{z})\n\ @deftypefnx {Mapping Function} {} angle (@var{z})\n\ Compute the argument, i.e., angle of @var{z}.\n\ \n\ This is defined as,\n\ @tex\n\ $\\theta = atan2 (y, x),$\n\ @end tex\n\ @ifnottex\n\ @var{theta} = @code{atan2 (@var{y}, @var{x})},\n\ @end ifnottex\n\ in radians.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ arg (3 + 4i)\n\ @result{} 0.92730\n\ @end group\n\ @end example\n\ @seealso{abs}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } /* %!assert (arg (1), 0) %!assert (arg (i), pi/2) %!assert (arg (-1), pi) %!assert (arg (-i), -pi/2) %!assert (arg ([1, i; -1, -i]), [0, pi/2; pi, -pi/2]) %!assert (arg (single (1)), single (0)) %!assert (arg (single (i)), single (pi/2)) %!test %! if (ismac ()) %! ## Avoid failing for a MacOS feature %! assert (arg (single (-1)), single (pi), 2*eps (single (1))); %! else %! assert (arg (single (-1)), single (pi)); %! endif %!assert (arg (single (-i)), single (-pi/2)) %!assert (arg (single ([1, i; -1, -i])), single ([0, pi/2; pi, -pi/2]), 2e1*eps ("single")) %!error arg () %!error arg (1, 2) */ DEFUN (asin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asin (@var{x})\n\ Compute the inverse sine in radians for each element of @var{x}.\n\ @seealso{sin, asind}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asin (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! x = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]; %! v = [0, pi/6, pi/4, pi/3, pi/2, pi/3, pi/4, pi/6, 0]; %! assert (asin (x), v, sqrt (eps)); %!test %! x = single ([0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]); %! v = single ([0, pi/6, pi/4, pi/3, pi/2, pi/3, pi/4, pi/6, 0]); %! assert (asin (x), v, sqrt (eps ("single"))); ## Test values on either side of branch cut %!test %! rval = pi/2; %! ival = 1.31695789692481635; %! obs = asin ([2, 2-i*eps, 2+i*eps]); %! exp = [rval - ival*i, rval - ival*i, rval + ival*i]; %! assert (obs, exp, 2*eps); %! obs = asin ([-2, -2-i*eps, -2+i*eps]); %! exp = [-rval + ival*i, -rval - ival*i, -rval + ival*i]; %! assert (obs, exp, 2*eps); %! assert (asin ([2 0]), [rval - ival*i, 0], 2*eps); %! assert (asin ([2 0i]), [rval - ival*i, 0], 2*eps); %!error asin () %!error asin (1, 2) */ DEFUN (asinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asinh (@var{x})\n\ Compute the inverse hyperbolic sine for each element of @var{x}.\n\ @seealso{sinh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asinh (); else print_usage (); return retval; } /* %!test %! v = [0, pi/2*i, 0, -pi/2*i]; %! x = [0, i, 0, -i]; %! assert (asinh (x), v, sqrt (eps)); %!test %! v = single ([0, pi/2*i, 0, -pi/2*i]); %! x = single ([0, i, 0, -i]); %! assert (asinh (x), v, sqrt (eps ("single"))); %!error asinh () %!error asinh (1, 2) */ DEFUN (atan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atan (@var{x})\n\ Compute the inverse tangent in radians for each element of @var{x}.\n\ @seealso{tan, atand}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atan (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! v = [0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0]; %! x = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]; %! assert (atan (x), v, sqrt (eps)); %!test %! v = single ([0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0]); %! x = single ([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]); %! assert (atan (x), v, sqrt (eps ("single"))); %!error atan () %!error atan (1, 2) */ DEFUN (atanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atanh (@var{x})\n\ Compute the inverse hyperbolic tangent for each element of @var{x}.\n\ @seealso{tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atanh (); else print_usage (); return retval; } /* %!test %! v = [0, 0]; %! x = [0, 0]; %! assert (atanh (x), v, sqrt (eps)); %!test %! v = single ([0, 0]); %! x = single ([0, 0]); %! assert (atanh (x), v, sqrt (eps ("single"))); %!error atanh () %!error atanh (1, 2) */ DEFUN (cbrt, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cbrt (@var{x})\n\ Compute the real cube root of each element of @var{x}.\n\ \n\ Unlike @code{@var{x}^(1/3)}, the result will be negative if @var{x} is\n\ negative.\n\ @seealso{nthroot}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cbrt (); else print_usage (); return retval; } /* %!assert (cbrt (64), 4) %!assert (cbrt (-125), -5) %!assert (cbrt (0), 0) %!assert (cbrt (Inf), Inf) %!assert (cbrt (-Inf), -Inf) %!assert (cbrt (NaN), NaN) %!assert (cbrt (2^300), 2^100) %!assert (cbrt (125*2^300), 5*2^100) %!error cbrt () %!error cbrt (1, 2) */ DEFUN (ceil, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ceil (@var{x})\n\ Return the smallest integer not less than @var{x}.\n\ \n\ This is equivalent to rounding towards positive infinity.\n\ \n\ If @var{x} is complex, return\n\ @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ ceil ([-2.7, 2.7])\n\ @result{} -2 3\n\ @end group\n\ @end example\n\ @seealso{floor, round, fix}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).ceil (); else print_usage (); return retval; } /* ## double precision %!assert (ceil ([2, 1.1, -1.1, -1]), [2, 2, -1, -1]) ## complex double precison %!assert (ceil ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 2+2i, -1-i, -1-i]) ## single precision %!assert (ceil (single ([2, 1.1, -1.1, -1])), single ([2, 2, -1, -1])) ## complex single precision %!assert (ceil (single ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single ([2+2i, 2+2i, -1-i, -1-i])) %!error ceil () %!error ceil (1, 2) */ DEFUN (conj, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} conj (@var{z})\n\ Return the complex conjugate of @var{z}.\n\ \n\ The complex conjugate is defined as\n\ @tex\n\ $\\bar{z} = x - iy$.\n\ @end tex\n\ @ifnottex\n\ @code{conj (@var{z})} = @var{x} - @var{i}@var{y}.\n\ @end ifnottex\n\ @seealso{real, imag}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).conj (); else print_usage (); return retval; } /* %!assert (conj (1), 1) %!assert (conj (i), -i) %!assert (conj (1+i), 1-i) %!assert (conj (1-i), 1+i) %!assert (conj ([-1, -i; -1+i, -1-i]), [-1, i; -1-i, -1+i]) %!assert (conj (single (1)), single (1)) %!assert (conj (single (i)), single (-i)) %!assert (conj (single (1+i)), single (1-i)) %!assert (conj (single (1-i)), single (1+i)) %!assert (conj (single ([-1, -i; -1+i, -1-i])), single ([-1, i; -1-i, -1+i])) %!error conj () %!error conj (1, 2) */ DEFUN (cos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cos (@var{x})\n\ Compute the cosine for each element of @var{x} in radians.\n\ @seealso{acos, cosd, cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cos (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]; %! assert (cos (x), v, sqrt (eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = single ([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single ([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]); %! assert (cos (x), v, sqrt (eps ("single"))); %!error cos () %!error cos (1, 2) */ DEFUN (cosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cosh (@var{x})\n\ Compute the hyperbolic cosine for each element of @var{x}.\n\ @seealso{acosh, sinh, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cosh (); else print_usage (); return retval; } /* %!test %! x = [0, pi/2*i, pi*i, 3*pi/2*i]; %! v = [1, 0, -1, 0]; %! assert (cosh (x), v, sqrt (eps)); %!test %! x = single ([0, pi/2*i, pi*i, 3*pi/2*i]); %! v = single ([1, 0, -1, 0]); %! assert (cosh (x), v, sqrt (eps ("single"))); %!error cosh () %!error cosh (1, 2) */ DEFUN (erf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erf (@var{z})\n\ Compute the error function.\n\ \n\ The error function is defined as\n\ @tex\n\ $$\n\ {\\rm erf} (z) = {2 \\over \\sqrt{\\pi}}\\int_0^z e^{-t^2} dt\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ z\n\ 2 /\n\ erf (z) = --------- * | e^(-t^2) dt\n\ sqrt (pi) /\n\ t=0\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{erfc, erfcx, erfi, dawson, erfinv, erfcinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erf (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt (-1/(6.4187*6.4187)); %! assert (erf (a), erf (real (a))); %!test %! x = [0,.5,1]; %! v = [0, .520499877813047, .842700792949715]; %! assert (erf (x), v, 1.e-10); %! assert (erf (-x), -v, 1.e-10); %! assert (erfc (x), 1-v, 1.e-10); %! assert (erfinv (v), x, 1.e-10); %!test %! a = -1i*sqrt (single (-1/(6.4187*6.4187))); %! assert (erf (a), erf (real (a))); %!test %! x = single ([0,.5,1]); %! v = single ([0, .520499877813047, .842700792949715]); %! assert (erf (x), v, 1.e-6); %! assert (erf (-x), -v, 1.e-6); %! assert (erfc (x), 1-v, 1.e-6); %! assert (erfinv (v), x, 1.e-6); %!test %! x = [1+2i,-1+2i,1e-6+2e-6i,0+2i]; %! v = [-0.53664356577857-5.04914370344703i, 0.536643565778565-5.04914370344703i, 0.112837916709965e-5+0.225675833419178e-5i, 18.5648024145755526i]; %! assert (erf (x), v, -1.e-10); %! assert (erf (-x), -v, -1.e-10); %! assert (erfc (x), 1-v, -1.e-10); %!error erf () %!error erf (1, 2) */ DEFUN (erfinv, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfinv (@var{x})\n\ Compute the inverse error function.\n\ \n\ The inverse error function is defined such that\n\ \n\ @example\n\ erf (@var{y}) == @var{x}\n\ @end example\n\ @seealso{erf, erfc, erfcx, erfi, dawson, erfcinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfinv (); else print_usage (); return retval; } /* ## middle region %!assert (erf (erfinv ([-0.9 -0.3 0 0.4 0.8])), [-0.9 -0.3 0 0.4 0.8], eps) %!assert (erf (erfinv (single ([-0.9 -0.3 0 0.4 0.8]))), single ([-0.9 -0.3 0 0.4 0.8]), eps ("single")) ## tail region %!assert (erf (erfinv ([-0.999 -0.99 0.9999 0.99999])), [-0.999 -0.99 0.9999 0.99999], eps) %!assert (erf (erfinv (single ([-0.999 -0.99 0.9999 0.99999]))), single ([-0.999 -0.99 0.9999 0.99999]), eps ("single")) ## backward - loss of accuracy %!assert (erfinv (erf ([-3 -1 -0.4 0.7 1.3 2.8])), [-3 -1 -0.4 0.7 1.3 2.8], -1e-12) %!assert (erfinv (erf (single ([-3 -1 -0.4 0.7 1.3 2.8]))), single ([-3 -1 -0.4 0.7 1.3 2.8]), -1e-4) ## exceptional %!assert (erfinv ([-1, 1, 1.1, -2.1]), [-Inf, Inf, NaN, NaN]) %!error erfinv (1+2i) %!error erfinv () %!error erfinv (1, 2) */ DEFUN (erfcinv, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfcinv (@var{x})\n\ Compute the inverse complementary error function.\n\ \n\ The inverse complementary error function is defined such that\n\ \n\ @example\n\ erfc (@var{y}) == @var{x}\n\ @end example\n\ @seealso{erfc, erf, erfcx, erfi, dawson, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfcinv (); else print_usage (); return retval; } /* ## middle region %!assert (erfc (erfcinv ([1.9 1.3 1 0.6 0.2])), [1.9 1.3 1 0.6 0.2], eps) %!assert (erfc (erfcinv (single ([1.9 1.3 1 0.6 0.2]))), single ([1.9 1.3 1 0.6 0.2]), eps ("single")) ## tail region %!assert (erfc (erfcinv ([0.001 0.01 1.9999 1.99999])), [0.001 0.01 1.9999 1.99999], eps) %!assert (erfc (erfcinv (single ([0.001 0.01 1.9999 1.99999]))), single ([0.001 0.01 1.9999 1.99999]), eps ("single")) ## backward - loss of accuracy %!assert (erfcinv (erfc ([-3 -1 -0.4 0.7 1.3 2.8])), [-3 -1 -0.4 0.7 1.3 2.8], -1e-12) %!assert (erfcinv (erfc (single ([-3 -1 -0.4 0.7 1.3 2.8]))), single ([-3 -1 -0.4 0.7 1.3 2.8]), -1e-4) ## exceptional %!assert (erfcinv ([2, 0, -0.1, 2.1]), [-Inf, Inf, NaN, NaN]) %!error erfcinv (1+2i) %!error erfcinv () %!error erfcinv (1, 2) */ DEFUN (erfc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfc (@var{z})\n\ Compute the complementary error function.\n\ \n\ The complementary error function is defined as\n\ @tex\n\ $1 - {\\rm erf} (z)$.\n\ @end tex\n\ @ifnottex\n\ @w{@code{1 - erf (@var{z})}}.\n\ @end ifnottex\n\ @seealso{erfcinv, erfcx, erfi, dawson, erf, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfc (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt (-1/(6.4187*6.4187)); %! assert (erfc (a), erfc (real (a))); %!error erfc () %!error erfc (1, 2) */ DEFUN (erfcx, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfcx (@var{z})\n\ Compute the scaled complementary error function.\n\ \n\ The scaled complementary error function is defined as\n\ @tex\n\ $$\n\ e^{z^2} {\\rm erfc} (z) \\equiv e^{z^2} (1 - {\\rm erf} (z))\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ exp (z^2) * erfc (z)\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{erfc, erf, erfi, dawson, erfinv, erfcinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfcx (); else print_usage (); return retval; } /* %!test %! x = [1+2i,-1+2i,1e-6+2e-6i,0+2i]; %! assert (erfcx (x), exp (x.^2) .* erfc(x), -1.e-10); %!test %! x = [100, 100+20i]; %! v = [0.0056416137829894329, 0.0054246791754558-0.00108483153786434i]; %! assert (erfcx (x), v, -1.e-10); %!error erfcx () %!error erfcx (1, 2) */ DEFUN (erfi, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfi (@var{z})\n\ Compute the imaginary error function.\n\ \n\ The imaginary error function is defined as\n\ @tex\n\ $$\n\ -i {\\rm erf} (iz)\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ -i * erf (i*z)\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{erfc, erf, erfcx, dawson, erfinv, erfcinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfi (); else print_usage (); return retval; } /* %!test %! x = [-0.1, 0.1, 1, 1+2i,-1+2i,1e-6+2e-6i,0+2i]; %! assert (erfi (x), -i * erf(i*x), -1.e-10); %!error erfi () %!error erfi (1, 2) */ DEFUN (dawson, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} dawson (@var{z})\n\ Compute the Dawson (scaled imaginary error) function.\n\ \n\ The Dawson function is defined as\n\ @tex\n\ $$\n\ {\\sqrt{\\pi} \\over 2} e^{-z^2} {\\rm erfi} (z) \\equiv -i {\\sqrt{\\pi} \\over 2} e^{-z^2} {\\rm erf} (iz)\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ (sqrt (pi) / 2) * exp (-z^2) * erfi (z)\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{erfc, erf, erfcx, erfi, erfinv, erfcinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).dawson (); else print_usage (); return retval; } /* %!test %! x = [0.1, 1, 1+2i,-1+2i,1e-4+2e-4i,0+2i]; %! v = [0.099335992397852861, 0.53807950691, -13.38892731648-11.828715104i, 13.38892731648-11.828715104i, 0.0001000000073333+0.000200000001333i, 48.160012114291i]; %! assert (dawson (x), v, -1.e-10); %! assert (dawson (-x), -v, -1.e-10); %!error dawson () %!error dawson (1, 2) */ DEFUN (exp, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} exp (@var{x})\n\ Compute\n\ @tex\n\ $e^{x}$\n\ @end tex\n\ @ifnottex\n\ @code{e^x}\n\ @end ifnottex\n\ for each element of @var{x}.\n\ \n\ To compute the matrix exponential, see @ref{Linear Algebra}.\n\ @seealso{log}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).exp (); else print_usage (); return retval; } /* %!assert (exp ([0, 1, -1, -1000]), [1, e, 1/e, 0], sqrt (eps)) %!assert (exp (1+i), e * (cos (1) + sin (1) * i), sqrt (eps)) %!assert (exp (single ([0, 1, -1, -1000])), single ([1, e, 1/e, 0]), sqrt (eps ("single"))) %!assert (exp (single (1+i)), single (e * (cos (1) + sin (1) * i)), sqrt (eps ("single"))) %!assert (exp ([Inf, -Inf, NaN]), [Inf 0 NaN]) %!assert (exp (single ([Inf, -Inf, NaN])), single ([Inf 0 NaN])) %!error exp () %!error exp (1, 2) */ DEFUN (expm1, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} expm1 (@var{x})\n\ Compute\n\ @tex\n\ $ e^{x} - 1 $\n\ @end tex\n\ @ifnottex\n\ @code{exp (@var{x}) - 1}\n\ @end ifnottex\n\ accurately in the neighborhood of zero.\n\ @seealso{exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).expm1 (); else print_usage (); return retval; } /* %!assert (expm1 (2*eps), 2*eps, 1e-29) %!assert (expm1 ([Inf, -Inf, NaN]), [Inf -1 NaN]) %!assert (expm1 (single ([Inf, -Inf, NaN])), single ([Inf -1 NaN])) %!error expm1 () %!error expm1 (1, 2) */ DEFUN (isfinite, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isfinite (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ finite values and false where they are not.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ isfinite ([13, Inf, NA, NaN])\n\ @result{} [ 1, 0, 0, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isinf, isnan, isna}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).finite (); else print_usage (); return retval; } /* %!assert (!isfinite (Inf)) %!assert (!isfinite (NaN)) %!assert (isfinite (rand (1,10))) %!assert (!isfinite (single (Inf))) %!assert (!isfinite (single (NaN))) %!assert (isfinite (single (rand (1,10)))) %!error isfinite () %!error isfinite (1, 2) */ DEFUN (fix, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} fix (@var{x})\n\ Truncate fractional portion of @var{x} and return the integer portion.\n\ \n\ This is equivalent to rounding towards zero. If @var{x} is complex, return\n\ @code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ fix ([-2.7, 2.7])\n\ @result{} -2 2\n\ @end group\n\ @end example\n\ @seealso{ceil, floor, round}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).fix (); else print_usage (); return retval; } /* %!assert (fix ([1.1, 1, -1.1, -1]), [1, 1, -1, -1]) %!assert (fix ([1.1+1.1i, 1+i, -1.1-1.1i, -1-i]), [1+i, 1+i, -1-i, -1-i]) %!assert (fix (single ([1.1, 1, -1.1, -1])), single ([1, 1, -1, -1])) %!assert (fix (single ([1.1+1.1i, 1+i, -1.1-1.1i, -1-i])), single ([1+i, 1+i, -1-i, -1-i])) %!error fix () %!error fix (1, 2) */ DEFUN (floor, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} floor (@var{x})\n\ Return the largest integer not greater than @var{x}.\n\ \n\ This is equivalent to rounding towards negative infinity. If @var{x} is\n\ complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ floor ([-2.7, 2.7])\n\ @result{} -3 2\n\ @end group\n\ @end example\n\ @seealso{ceil, round, fix}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).floor (); else print_usage (); return retval; } /* %!assert (floor ([2, 1.1, -1.1, -1]), [2, 1, -2, -1]) %!assert (floor ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 1+i, -2-2i, -1-i]) %!assert (floor (single ([2, 1.1, -1.1, -1])), single ([2, 1, -2, -1])) %!assert (floor (single ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single ([2+2i, 1+i, -2-2i, -1-i])) %!error floor () %!error floor (1, 2) */ DEFUN (gamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} gamma (@var{z})\n\ Compute the Gamma function.\n\ \n\ The Gamma function is defined as\n\ @tex\n\ $$\n\ \\Gamma (z) = \\int_0^\\infty t^{z-1} e^{-t} dt.\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ infinity\n\ /\n\ gamma (z) = | t^(z-1) exp (-t) dt.\n\ /\n\ t=0\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ \n\ Programming Note: The gamma function can grow quite large even for small\n\ input values. In many cases it may be preferable to use the natural\n\ logarithm of the gamma function (@code{gammaln}) in calculations to minimize\n\ loss of precision. The final result is then\n\ @code{exp (@var{result_using_gammaln}).}\n\ @seealso{gammainc, gammaln, factorial}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).gamma (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt (-1/(6.4187*6.4187)); %! assert (gamma (a), gamma (real (a))); %!test %! x = [.5, 1, 1.5, 2, 3, 4, 5]; %! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]; %! assert (gamma (x), v, sqrt (eps)); %!test %! a = single (-1i*sqrt (-1/(6.4187*6.4187))); %! assert (gamma (a), gamma (real (a))); %!test %! x = single ([.5, 1, 1.5, 2, 3, 4, 5]); %! v = single ([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]); %! assert (gamma (x), v, sqrt (eps ("single"))); %!test %! ## Test exceptional values %! x = [-Inf, -1, -0, 0, 1, Inf, NaN]; %! v = [Inf, Inf, -Inf, Inf, 1, Inf, NaN]; %! assert (gamma (x), v); %! assert (gamma (single (x)), single (v)); %!error gamma () %!error gamma (1, 2) */ DEFUN (imag, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} imag (@var{z})\n\ Return the imaginary part of @var{z} as a real number.\n\ @seealso{real, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).imag (); else print_usage (); return retval; } /* %!assert (imag (1), 0) %!assert (imag (i), 1) %!assert (imag (1+i), 1) %!assert (imag ([i, 1; 1, i]), full (eye (2))) %!assert (imag (single (1)), single (0)) %!assert (imag (single (i)), single (1)) %!assert (imag (single (1+i)), single (1)) %!assert (imag (single ([i, 1; 1, i])), full (eye (2,"single"))) %!error imag () %!error imag (1, 2) */ DEFUNX ("isalnum", Fisalnum, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalnum (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ letters or digits and false where they are not.\n\ \n\ This is equivalent to (@code{isalpha (@var{s}) | isdigit (@var{s})}).\n\ @seealso{isalpha, isdigit, ispunct, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalnum (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("A":"Z") + 1) = true; %! result(toascii ("0":"9") + 1) = true; %! result(toascii ("a":"z") + 1) = true; %! assert (isalnum (charset), result); %!error isalnum () %!error isalnum (1, 2) */ DEFUNX ("isalpha", Fisalpha, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalpha (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ letters and false where they are not.\n\ \n\ This is equivalent to (@code{islower (@var{s}) | isupper (@var{s})}).\n\ @seealso{isdigit, ispunct, isspace, iscntrl, isalnum, islower, isupper}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalpha (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("A":"Z") + 1) = true; %! result(toascii ("a":"z") + 1) = true; %! assert (isalpha (charset), result); %!error isalpha () %!error isalpha (1, 2) */ DEFUNX ("isascii", Fisascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isascii (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ ASCII characters (in the range 0 to 127 decimal) and false where they are\n\ not.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisascii (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = true (1, 128); %! assert (isascii (charset), result); %!error isascii () %!error isascii (1, 2) */ DEFUNX ("iscntrl", Fiscntrl, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} iscntrl (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ control characters and false where they are not.\n\ @seealso{ispunct, isspace, isalpha, isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xiscntrl (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(1:32) = true; %! result(128) = true; %! assert (iscntrl (charset), result); %!error iscntrl () %!error iscntrl (1, 2) */ DEFUNX ("isdigit", Fisdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isdigit (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ decimal digits (0-9) and false where they are not.\n\ @seealso{isxdigit, isalpha, isletter, ispunct, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisdigit (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("0":"9") + 1) = true; %! assert (isdigit (charset), result); %!error isdigit () %!error isdigit (1, 2) */ DEFUN (isinf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isinf (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ infinite and false where they are not.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ isinf ([13, Inf, NA, NaN])\n\ @result{} [ 0, 1, 0, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isfinite, isnan, isna}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isinf (); else print_usage (); return retval; } /* %!assert (isinf (Inf)) %!assert (!isinf (NaN)) %!assert (!isinf (NA)) %!assert (isinf (rand (1,10)), false (1,10)) %!assert (isinf ([NaN -Inf -1 0 1 Inf NA]), [false, true, false, false, false, true, false]) %!assert (isinf (single (Inf))) %!assert (!isinf (single (NaN))) %!assert (!isinf (single (NA))) %!assert (isinf (single (rand (1,10))), false (1,10)) %!assert (isinf (single ([NaN -Inf -1 0 1 Inf NA])), [false, true, false, false, false, true, false]) %!error isinf () %!error isinf (1, 2) */ DEFUNX ("isgraph", Fisgraph, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isgraph (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ printable characters (but not the space character) and false where they are\n\ not.\n\ @seealso{isprint}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisgraph (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(34:127) = true; %! assert (isgraph (charset), result); %!error isgraph () %!error isgraph (1, 2) */ DEFUNX ("islower", Fislower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} islower (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ lowercase letters and false where they are not.\n\ @seealso{isupper, isalpha, isletter, isalnum}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xislower (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("a":"z") + 1) = true; %! assert (islower (charset), result); %!error islower () %!error islower (1, 2) */ DEFUN (isna, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isna (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ NA (missing) values and false where they are not.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ isna ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isnan, isinf, isfinite}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isna (); else print_usage (); return retval; } /* %!assert (!isna (Inf)) %!assert (!isna (NaN)) %!assert (isna (NA)) %!assert (isna (rand (1,10)), false (1,10)) %!assert (isna ([NaN -Inf -1 0 1 Inf NA]), [false, false, false, false, false, false, true]) %!assert (!isna (single (Inf))) %!assert (!isna (single (NaN))) %!assert (isna (single (NA))) %!assert (isna (single (rand (1,10))), false (1,10)) %!assert (isna (single ([NaN -Inf -1 0 1 Inf NA])), [false, false, false, false, false, false, true]) %!error isna () %!error isna (1, 2) */ DEFUN (isnan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isnan (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ NaN values and false where they are not.\n\ \n\ NA values are also considered NaN values. For example:\n\ \n\ @example\n\ @group\n\ isnan ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 1 ]\n\ @end group\n\ @end example\n\ @seealso{isna, isinf, isfinite}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isnan (); else print_usage (); return retval; } /* %!assert (!isnan (Inf)) %!assert (isnan (NaN)) %!assert (isnan (NA)) %!assert (isnan (rand (1,10)), false (1,10)) %!assert (isnan ([NaN -Inf -1 0 1 Inf NA]), [true, false, false, false, false, false, true]) %!assert (!isnan (single (Inf))) %!assert (isnan (single (NaN))) %!assert (isnan (single (NA))) %!assert (isnan (single (rand (1,10))), false (1,10)) %!assert (isnan (single ([NaN -Inf -1 0 1 Inf NA])), [true, false, false, false, false, false, true]) %!error isnan () %!error isnan (1, 2) */ DEFUNX ("isprint", Fisprint, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isprint (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ printable characters (including the space character) and false where they\n\ are not.\n\ @seealso{isgraph}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisprint (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(33:127) = true; %! assert (isprint (charset), result); %!error isprint () %!error isprint (1, 2) */ DEFUNX ("ispunct", Fispunct, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ispunct (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ punctuation characters and false where they are not.\n\ @seealso{isalpha, isdigit, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xispunct (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(34:48) = true; %! result(59:65) = true; %! result(92:97) = true; %! result(124:127) = true; %! assert (ispunct (charset), result); %!error ispunct () %!error ispunct (1, 2) */ DEFUNX ("isspace", Fisspace, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isspace (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ whitespace characters (space, formfeed, newline, carriage return, tab, and\n\ vertical tab) and false where they are not.\n\ @seealso{iscntrl, ispunct, isalpha, isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisspace (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii (" \f\n\r\t\v") + 1) = true; %! assert (isspace (charset), result); %!error isspace () %!error isspace (1, 2) */ DEFUNX ("isupper", Fisupper, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isupper (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ uppercase letters and false where they are not.\n\ @seealso{islower, isalpha, isletter, isalnum}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisupper (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("A":"Z") + 1) = true; %! assert (isupper (charset), result); %!error isupper () %!error isupper (1, 2) */ DEFUNX ("isxdigit", Fisxdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isxdigit (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ hexadecimal digits (0-9 and @nospell{a-fA-F}).\n\ @seealso{isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisxdigit (); else print_usage (); return retval; } /* %!test %! charset = char (0:127); %! result = false (1, 128); %! result(toascii ("A":"F") + 1) = true; %! result(toascii ("0":"9") + 1) = true; %! result(toascii ("a":"f") + 1) = true; %! assert (isxdigit (charset), result); %!error isxdigit () %!error isxdigit (1, 2) */ DEFUN (lgamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} gammaln (@var{x})\n\ @deftypefnx {Mapping Function} {} lgamma (@var{x})\n\ Return the natural logarithm of the gamma function of @var{x}.\n\ @seealso{gamma, gammainc}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).lgamma (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt (-1/(6.4187*6.4187)); %! assert (gammaln (a), gammaln (real (a))); %!test %! x = [.5, 1, 1.5, 2, 3, 4, 5]; %! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]; %! assert (gammaln (x), log (v), sqrt (eps)) %!test %! a = single (-1i*sqrt (-1/(6.4187*6.4187))); %! assert (gammaln (a), gammaln (real (a))); %!test %! x = single ([.5, 1, 1.5, 2, 3, 4, 5]); %! v = single ([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]); %! assert (gammaln (x), log (v), sqrt (eps ("single"))) %!test %! x = [-1, 0, 1, Inf]; %! v = [Inf, Inf, 0, Inf]; %! assert (gammaln (x), v); %! assert (gammaln (single (x)), single (v)); %!error gammaln () %!error gammaln (1,2) */ DEFUN (log, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log (@var{x})\n\ Compute the natural logarithm,\n\ @tex\n\ $\\ln{(x)},$\n\ @end tex\n\ @ifnottex\n\ @code{ln (@var{x})},\n\ @end ifnottex\n\ for each element of @var{x}.\n\ \n\ To compute the matrix logarithm, see @ref{Linear Algebra}.\n\ @seealso{exp, log1p, log2, log10, logspace}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log (); else print_usage (); return retval; } /* %!assert (log ([1, e, e^2]), [0, 1, 2], sqrt (eps)) %!assert (log ([-0.5, -1.5, -2.5]), log ([0.5, 1.5, 2.5]) + pi*1i, sqrt (eps)) %!assert (log (single ([1, e, e^2])), single ([0, 1, 2]), sqrt (eps ("single"))) %!assert (log (single ([-0.5, -1.5, -2.5])), single (log ([0.5, 1.5, 2.5]) + pi*1i), 4*eps ("single")) %!error log () %!error log (1, 2) */ DEFUN (log10, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log10 (@var{x})\n\ Compute the base-10 logarithm of each element of @var{x}.\n\ @seealso{log, log2, logspace, exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log10 (); else print_usage (); return retval; } /* %!assert (log10 ([0.01, 0.1, 1, 10, 100]), [-2, -1, 0, 1, 2], sqrt (eps)) %!assert (log10 (single ([0.01, 0.1, 1, 10, 100])), single ([-2, -1, 0, 1, 2]), sqrt (eps ("single"))) %!error log10 () %!error log10 (1, 2) */ DEFUN (log1p, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log1p (@var{x})\n\ Compute\n\ @tex\n\ $\\ln{(1 + x)}$\n\ @end tex\n\ @ifnottex\n\ @code{log (1 + @var{x})}\n\ @end ifnottex\n\ accurately in the neighborhood of zero.\n\ @seealso{log, exp, expm1}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log1p (); else print_usage (); return retval; } /* %!assert (log1p ([0, 2*eps, -2*eps]), [0, 2*eps, -2*eps], 1e-29) %!assert (log1p (single ([0, 2*eps, -2*eps])), single ([0, 2*eps, -2*eps]), 1e-29) %!error log1p () %!error log1p (1, 2) */ DEFUN (real, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} real (@var{z})\n\ Return the real part of @var{z}.\n\ @seealso{imag, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).real (); else print_usage (); return retval; } /* %!assert (real (1), 1) %!assert (real (i), 0) %!assert (real (1+i), 1) %!assert (real ([1, i; i, 1]), full (eye (2))) %!assert (real (single (1)), single (1)) %!assert (real (single (i)), single (0)) %!assert (real (single (1+i)), single (1)) %!assert (real (single ([1, i; i, 1])), full (eye (2,"single"))) %!error real () %!error real (1, 2) */ DEFUN (round, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} round (@var{x})\n\ Return the integer nearest to @var{x}.\n\ \n\ If @var{x} is complex, return\n\ @code{round (real (@var{x})) + round (imag (@var{x})) * I}. If there\n\ are two nearest integers, return the one further away from zero.\n\ \n\ @example\n\ @group\n\ round ([-2.7, 2.7])\n\ @result{} -3 3\n\ @end group\n\ @end example\n\ @seealso{ceil, floor, fix, roundb}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).round (); else print_usage (); return retval; } /* %!assert (round (1), 1) %!assert (round (1.1), 1) %!assert (round (5.5), 6) %!assert (round (i), i) %!assert (round (2.5+3.5i), 3+4i) %!assert (round (-2.6), -3) %!assert (round ([1.1, -2.4; -3.7, 7.1]), [1, -2; -4, 7]) %!assert (round (single (1)), single (1)) %!assert (round (single (1.1)), single (1)) %!assert (round (single (5.5)), single (6)) %!assert (round (single (i)), single (i)) %!assert (round (single (2.5+3.5i)), single (3+4i)) %!assert (round (single (-2.6)), single (-3)) %!assert (round (single ([1.1, -2.4; -3.7, 7.1])), single ([1, -2; -4, 7])) %!error round () %!error round (1, 2) */ DEFUN (roundb, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} roundb (@var{x})\n\ Return the integer nearest to @var{x}. If there are two nearest\n\ integers, return the even one (banker's rounding).\n\ \n\ If @var{x} is complex,\n\ return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.\n\ @seealso{round}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).roundb (); else print_usage (); return retval; } /* %!assert (roundb (1), 1) %!assert (roundb (1.1), 1) %!assert (roundb (1.5), 2) %!assert (roundb (4.5), 4) %!assert (roundb (i), i) %!assert (roundb (2.5+3.5i), 2+4i) %!assert (roundb (-2.6), -3) %!assert (roundb ([1.1, -2.4; -3.7, 7.1]), [1, -2; -4, 7]) %!assert (roundb (single (1)), single (1)) %!assert (roundb (single (1.1)), single (1)) %!assert (roundb (single (1.5)), single (2)) %!assert (roundb (single (4.5)), single (4)) %!assert (roundb (single (i)), single (i)) %!assert (roundb (single (2.5+3.5i)), single (2+4i)) %!assert (roundb (single (-2.6)), single (-3)) %!assert (roundb (single ([1.1, -2.4; -3.7, 7.1])), single ([1, -2; -4, 7])) %!error roundb () %!error roundb (1, 2) */ DEFUN (sign, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sign (@var{x})\n\ Compute the @dfn{signum} function.\n\ \n\ This is defined as\n\ @tex\n\ $$\n\ {\\rm sign} (@var{x}) = \\cases{1,&$x>0$;\\cr 0,&$x=0$;\\cr -1,&$x<0$.\\cr}\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ -1, x < 0;\n\ sign (x) = 0, x = 0;\n\ 1, x > 0.\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ \n\ For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.\n\ \n\ Note that @code{sign (-0.0)} is 0. Although IEEE 754 floating point\n\ allows zero to be signed, 0.0 and -0.0 compare equal. If you must test\n\ whether zero is signed, use the @code{signbit} function.\n\ @seealso{signbit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).signum (); else print_usage (); return retval; } /* %!assert (sign (-2) , -1) %!assert (sign (0), 0) %!assert (sign (3), 1) %!assert (sign ([1, -pi; e, 0]), [1, -1; 1, 0]) %!assert (sign (single (-2)) , single (-1)) %!assert (sign (single (0)), single (0)) %!assert (sign (single (3)), single (1)) %!assert (sign (single ([1, -pi; e, 0])), single ([1, -1; 1, 0])) %!error sign () %!error sign (1, 2) */ DEFUNX ("signbit", Fsignbit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} signbit (@var{x})\n\ Return logical true if the value of @var{x} has its sign bit set and false\n\ otherwise.\n\ \n\ This behavior is consistent with the other logical functions.\n\ See @ref{Logical Values}. The behavior differs from the C language function\n\ which returns nonzero if the sign bit is set.\n\ \n\ This is not the same as @code{x < 0.0}, because IEEE 754 floating point\n\ allows zero to be signed. The comparison @code{-0.0 < 0.0} is false,\n\ but @code{signbit (-0.0)} will return a nonzero value.\n\ @seealso{sign}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) { retval = args(0).xsignbit (); retval = (retval != 0); } else print_usage (); return retval; } /* %!assert (signbit (1) == 0) %!assert (signbit (-2) != 0) %!assert (signbit (0) == 0) %!assert (signbit (-0) != 0) %!assert (signbit (single (1)) == 0) %!assert (signbit (single (-2)) != 0) %!assert (signbit (single (0)) == 0) %!assert (signbit (single (-0)) != 0) %!error sign () %!error sign (1, 2) */ DEFUN (sin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sin (@var{x})\n\ Compute the sine for each element of @var{x} in radians.\n\ @seealso{asin, sind, sinh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sin (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]; %! assert (sin (x), v, sqrt (eps)); %!test %! x = single ([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single ([0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]); %! assert (sin (x), v, sqrt (eps ("single"))); %!error sin () %!error sin (1, 2) */ DEFUN (sinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sinh (@var{x})\n\ Compute the hyperbolic sine for each element of @var{x}.\n\ @seealso{asinh, cosh, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sinh (); else print_usage (); return retval; } /* %!test %! x = [0, pi/2*i, pi*i, 3*pi/2*i]; %! v = [0, i, 0, -i]; %! assert (sinh (x), v, sqrt (eps)); %!test %! x = single ([0, pi/2*i, pi*i, 3*pi/2*i]); %! v = single ([0, i, 0, -i]); %! assert (sinh (x), v, sqrt (eps ("single"))); %!error sinh () %!error sinh (1, 2) */ DEFUN (sqrt, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sqrt (@var{x})\n\ Compute the square root of each element of @var{x}.\n\ \n\ If @var{x} is negative, a complex result is returned.\n\ \n\ To compute the matrix square root, see @ref{Linear Algebra}.\n\ @seealso{realsqrt, nthroot}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sqrt (); else print_usage (); return retval; } /* %!assert (sqrt (4), 2) %!assert (sqrt (-1), i) %!assert (sqrt (1+i), exp (0.5 * log (1+i)), sqrt (eps)) %!assert (sqrt ([4, -4; i, 1-i]), [2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))], sqrt (eps)) %!assert (sqrt (single (4)), single (2)) %!assert (sqrt (single (-1)), single (i)) %!assert (sqrt (single (1+i)), single (exp (0.5 * log (1+i))), sqrt (eps ("single"))) %!assert (sqrt (single ([4, -4; i, 1-i])), single ([2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))]), sqrt (eps ("single"))) %!error sqrt () %!error sqrt (1, 2) */ DEFUN (tan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tan (@var{z})\n\ Compute the tangent for each element of @var{x} in radians.\n\ @seealso{atan, tand, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tan (); else print_usage (); return retval; } /* %!shared rt2, rt3 %! rt2 = sqrt (2); %! rt3 = sqrt (3); %!test %! x = [0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]; %! assert (tan (x), v, sqrt (eps)); %!test %! x = single ([0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single ([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]); %! assert (tan (x), v, sqrt (eps ("single"))); %!error tan () %!error tan (1, 2) */ DEFUN (tanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tanh (@var{x})\n\ Compute hyperbolic tangent for each element of @var{x}.\n\ @seealso{atanh, sinh, cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tanh (); else print_usage (); return retval; } /* %!test %! x = [0, pi*i]; %! v = [0, 0]; %! assert (tanh (x), v, sqrt (eps)); %!test %! x = single ([0, pi*i]); %! v = single ([0, 0]); %! assert (tanh (x), v, sqrt (eps ("single"))); %!error tanh () %!error tanh (1, 2) */ DEFUNX ("toascii", Ftoascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} toascii (@var{s})\n\ Return ASCII representation of @var{s} in a matrix.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ toascii (\"ASCII\")\n\ @result{} [ 65, 83, 67, 73, 73 ]\n\ @end group\n\ \n\ @end example\n\ @seealso{char}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoascii (); else print_usage (); return retval; } /* %!assert (toascii (char (0:127)), 0:127) %!assert (toascii (" ":"@"), 32:64) %!assert (toascii ("A":"Z"), 65:90) %!assert (toascii ("[":"`"), 91:96) %!assert (toascii ("a":"z"), 97:122) %!assert (toascii ("{":"~"), 123:126) %!error toascii () %!error toascii (1, 2) */ DEFUNX ("tolower", Ftolower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tolower (@var{s})\n\ @deftypefnx {Mapping Function} {} lower (@var{s})\n\ Return a copy of the string or cell string @var{s}, with each uppercase\n\ character replaced by the corresponding lowercase one; non-alphabetic\n\ characters are left unchanged.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ tolower (\"MiXeD cAsE 123\")\n\ @result{} \"mixed case 123\"\n\ @end group\n\ @end example\n\ @seealso{toupper}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtolower (); else print_usage (); return retval; } DEFALIAS (lower, tolower); /* %!assert (tolower ("OCTAVE"), "octave") %!assert (tolower ("123OCTave!_&"), "123octave!_&") %!assert (tolower ({"ABC", "DEF", {"GHI", {"JKL"}}}), {"abc", "def", {"ghi", {"jkl"}}}) %!assert (tolower (["ABC"; "DEF"]), ["abc"; "def"]) %!assert (tolower ({["ABC"; "DEF"]}), {["abc";"def"]}) %!assert (tolower (68), 68) %!assert (tolower ({[68, 68; 68, 68]}), {[68, 68; 68, 68]}) %!test %! classes = {@char, @double, @single, ... %! @int8, @int16, @int32, @int64, ... %! @uint8, @uint16, @uint32, @uint64}; %! for i = 1:numel (classes) %! cls = classes{i}; %! assert (class (tolower (cls (97))), class (cls (97))); %! assert (class (tolower (cls ([98, 99]))), class (cls ([98, 99]))); %! endfor %!test %! a(3,3,3,3) = "D"; %! assert (tolower (a)(3,3,3,3), "d"); %!test %! charset = char (0:127); %! result = charset; %! result (toascii ("A":"Z") + 1) = result (toascii ("a":"z") + 1); %! assert (tolower (charset), result); %!error <Invalid call to tolower> lower () %!error <Invalid call to tolower> tolower () %!error tolower (1, 2) */ DEFUNX ("toupper", Ftoupper, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} toupper (@var{s})\n\ @deftypefnx {Mapping Function} {} upper (@var{s})\n\ Return a copy of the string or cell string @var{s}, with each lowercase\n\ character replaced by the corresponding uppercase one; non-alphabetic\n\ characters are left unchanged.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ toupper (\"MiXeD cAsE 123\")\n\ @result{} \"MIXED CASE 123\"\n\ @end group\n\ @end example\n\ @seealso{tolower}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoupper (); else print_usage (); return retval; } DEFALIAS (upper, toupper); /* %!assert (toupper ("octave"), "OCTAVE") %!assert (toupper ("123OCTave!_&"), "123OCTAVE!_&") %!assert (toupper ({"abc", "def", {"ghi", {"jkl"}}}), {"ABC", "DEF", {"GHI", {"JKL"}}}) %!assert (toupper (["abc"; "def"]), ["ABC"; "DEF"]) %!assert (toupper ({["abc"; "def"]}), {["ABC";"DEF"]}) %!assert (toupper (100), 100) %!assert (toupper ({[100, 100; 100, 100]}), {[100, 100; 100, 100]}) %!test %! classes = {@char, @double, @single, ... %! @int8, @int16, @int32, @int64, ... %! @uint8, @uint16, @uint32, @uint64}; %! for i = 1:numel (classes) %! cls = classes{i}; %! assert (class (toupper (cls (97))), class (cls (97))); %! assert (class (toupper (cls ([98, 99]))), class (cls ([98, 99]))); %! endfor %!test %! a(3,3,3,3) = "d"; %! assert (toupper (a)(3,3,3,3), "D"); %!test %! charset = char (0:127); %! result = charset; %! result (toascii ("a":"z") + 1) = result (toascii ("A":"Z") + 1); %! assert (toupper (charset), result); %!error <Invalid call to toupper> toupper () %!error <Invalid call to toupper> upper () %!error toupper (1, 2) */ DEFALIAS (gammaln, lgamma);