Mercurial > hg > octave-nkf
view libinterp/corefcn/xdiv.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | a9574e3c6e9e |
children |
line wrap: on
line source
/* Copyright (C) 1993-2015 John W. Eaton Copyright (C) 2008 Jaroslav Hajek Copyright (C) 2009-2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include "Array-util.h" #include "CMatrix.h" #include "dMatrix.h" #include "CNDArray.h" #include "dNDArray.h" #include "fCMatrix.h" #include "fMatrix.h" #include "fCNDArray.h" #include "fNDArray.h" #include "oct-cmplx.h" #include "dDiagMatrix.h" #include "fDiagMatrix.h" #include "CDiagMatrix.h" #include "fCDiagMatrix.h" #include "lo-array-gripes.h" #include "quit.h" #include "error.h" #include "xdiv.h" static inline bool result_ok (octave_idx_type info) { assert (info != -1); return (info != -2); } static void solve_singularity_warning (double rcond) { gripe_singular_matrix (rcond); } template <class T1, class T2> bool mx_leftdiv_conform (const T1& a, const T2& b, blas_trans_type blas_trans) { octave_idx_type a_nr = blas_trans == blas_no_trans ? a.rows () : a.cols (); octave_idx_type b_nr = b.rows (); if (a_nr != b_nr) { octave_idx_type a_nc = blas_trans == blas_no_trans ? a.cols () : a.rows (); octave_idx_type b_nc = b.cols (); gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \ template bool mx_leftdiv_conform (const T1&, const T2&, blas_trans_type) INSTANTIATE_MX_LEFTDIV_CONFORM (Matrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (Matrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexMatrix, ComplexMatrix); template <class T1, class T2> bool mx_div_conform (const T1& a, const T2& b) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nc) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \ template bool mx_div_conform (const T1&, const T2&) INSTANTIATE_MX_DIV_CONFORM (Matrix, Matrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, ComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, Matrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, ComplexMatrix); // Right division functions. // // op2 / op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const Matrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return Matrix (); octave_idx_type info; double rcond = 0.0; Matrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 2 -*- ComplexMatrix xdiv (const Matrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 4 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ Matrix x_el_div (double a, const Matrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (double a, const ComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (const Complex a, const Matrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (const Complex a, const ComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // N-d array | 1 | 3 | // +---+----+ // complex N-d array | 2 | 4 | // +---+----+ NDArray x_el_div (double a, const NDArray& b) { NDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (double a, const ComplexNDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (const Complex a, const NDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (const Complex a, const ComplexNDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } // Left division functions. // // op2 \ op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- Matrix xleftdiv (const Matrix& a, const Matrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return Matrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 2 -*- ComplexMatrix xleftdiv (const Matrix& a, const ComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 3 -*- ComplexMatrix xleftdiv (const ComplexMatrix& a, const Matrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 4 -*- ComplexMatrix xleftdiv (const ComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } static void solve_singularity_warning (float rcond) { gripe_singular_matrix (rcond); } INSTANTIATE_MX_LEFTDIV_CONFORM (FloatMatrix, FloatMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatMatrix, FloatComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatComplexMatrix, FloatMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatComplexMatrix, FloatComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatMatrix, FloatMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatMatrix, FloatComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatComplexMatrix, FloatMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatComplexMatrix, FloatComplexMatrix); // Right division functions. // // op2 / op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- FloatMatrix xdiv (const FloatMatrix& a, const FloatMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatMatrix (); octave_idx_type info; float rcond = 0.0; FloatMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 2 -*- FloatComplexMatrix xdiv (const FloatMatrix& a, const FloatComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 3 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 4 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ FloatMatrix x_el_div (float a, const FloatMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (float a, const FloatComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (const FloatComplex a, const FloatMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (const FloatComplex a, const FloatComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // N-d array | 1 | 3 | // +---+----+ // complex N-d array | 2 | 4 | // +---+----+ FloatNDArray x_el_div (float a, const FloatNDArray& b) { FloatNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (float a, const FloatComplexNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (const FloatComplex a, const FloatNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (const FloatComplex a, const FloatComplexNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.numel (); i++) { octave_quit (); result (i) = a / b (i); } return result; } // Left division functions. // // op2 \ op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- FloatMatrix xleftdiv (const FloatMatrix& a, const FloatMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 2 -*- FloatComplexMatrix xleftdiv (const FloatMatrix& a, const FloatComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 3 -*- FloatComplexMatrix xleftdiv (const FloatComplexMatrix& a, const FloatMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 4 -*- FloatComplexMatrix xleftdiv (const FloatComplexMatrix& a, const FloatComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // Diagonal matrix division. template <class MT, class DMT> MT mdm_div_impl (const MT& a, const DMT& d) { if (! mx_div_conform (a, d)) return MT (); octave_idx_type m = a.rows (); octave_idx_type n = d.rows (); octave_idx_type l = d.length (); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type j = 0; j < l; j++) { const S del = dd[j]; if (del != S ()) for (octave_idx_type i = 0; i < m; i++) xx[i] = aa[i] / del; else for (octave_idx_type i = 0; i < m; i++) xx[i] = T (); aa += m; xx += m; } for (octave_idx_type i = l*m; i < n*m; i++) xx[i] = T (); return x; } // Right division functions. // // op2 / op1: dm cdm // +-- +---+----+ // matrix | 1 | | // +---+----+ // complex_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const DiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 2 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const DiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const ComplexDiagMatrix& b) { return mdm_div_impl (a, b); } // Right division functions, float type. // // op2 / op1: dm cdm // +-- +---+----+ // matrix | 1 | | // +---+----+ // complex_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- FloatMatrix xdiv (const FloatMatrix& a, const FloatDiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 2 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatDiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 3 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatComplexDiagMatrix& b) { return mdm_div_impl (a, b); } template <class MT, class DMT> MT dmm_leftdiv_impl (const DMT& d, const MT& a) { if (! mx_leftdiv_conform (d, a, blas_no_trans)) return MT (); octave_idx_type m = d.cols (); octave_idx_type n = a.cols (); octave_idx_type k = a.rows (); octave_idx_type l = d.length (); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type j = 0; j < n; j++) { for (octave_idx_type i = 0; i < l; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = l; i < m; i++) xx[i] = T (); aa += k; xx += m; } return x; } // Left division functions. // // op2 \ op1: m cm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- Matrix xleftdiv (const DiagMatrix& a, const Matrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 2 -*- ComplexMatrix xleftdiv (const DiagMatrix& a, const ComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 3 -*- ComplexMatrix xleftdiv (const ComplexDiagMatrix& a, const ComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // Left division functions, float type. // // op2 \ op1: m cm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- FloatMatrix xleftdiv (const FloatDiagMatrix& a, const FloatMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 2 -*- FloatComplexMatrix xleftdiv (const FloatDiagMatrix& a, const FloatComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 3 -*- FloatComplexMatrix xleftdiv (const FloatComplexDiagMatrix& a, const FloatComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // Diagonal by diagonal matrix division. template <class MT, class DMT> MT dmdm_div_impl (const MT& a, const DMT& d) { if (! mx_div_conform (a, d)) return MT (); octave_idx_type m = a.rows (); octave_idx_type n = d.rows (); octave_idx_type k = d.cols (); octave_idx_type l = std::min (m, n); octave_idx_type lk = std::min (l, k); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type i = 0; i < lk; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = lk; i < l; i++) xx[i] = T (); return x; } // Right division functions. // // op2 / op1: dm cdm // +-- +---+----+ // diag_matrix | 1 | | // +---+----+ // complex_diag_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- DiagMatrix xdiv (const DiagMatrix& a, const DiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 2 -*- ComplexDiagMatrix xdiv (const ComplexDiagMatrix& a, const DiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 3 -*- ComplexDiagMatrix xdiv (const ComplexDiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_div_impl (a, b); } // Right division functions, float type. // // op2 / op1: dm cdm // +-- +---+----+ // diag_matrix | 1 | | // +---+----+ // complex_diag_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- FloatDiagMatrix xdiv (const FloatDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 2 -*- FloatComplexDiagMatrix xdiv (const FloatComplexDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 3 -*- FloatComplexDiagMatrix xdiv (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_div_impl (a, b); } template <class MT, class DMT> MT dmdm_leftdiv_impl (const DMT& d, const MT& a) { if (! mx_leftdiv_conform (d, a, blas_no_trans)) return MT (); octave_idx_type m = d.cols (); octave_idx_type n = a.cols (); octave_idx_type k = d.rows (); octave_idx_type l = std::min (m, n); octave_idx_type lk = std::min (l, k); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type i = 0; i < lk; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = lk; i < l; i++) xx[i] = T (); return x; } // Left division functions. // // op2 \ op1: dm cdm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- DiagMatrix xleftdiv (const DiagMatrix& a, const DiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 2 -*- ComplexDiagMatrix xleftdiv (const DiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 3 -*- ComplexDiagMatrix xleftdiv (const ComplexDiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // Left division functions, float type. // // op2 \ op1: dm cdm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- FloatDiagMatrix xleftdiv (const FloatDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 2 -*- FloatComplexDiagMatrix xleftdiv (const FloatDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 3 -*- FloatComplexDiagMatrix xleftdiv (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); }