Mercurial > hg > octave-nkf
view libinterp/dldfcn/ccolamd.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | a9574e3c6e9e |
children |
line wrap: on
line source
/* Copyright (C) 2005-2015 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // This is the octave interface to ccolamd, which bore the copyright given // in the help of the functions. #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cstdlib> #include <string> #include <vector> #include "ov.h" #include "defun-dld.h" #include "pager.h" #include "ov-re-mat.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "oct-sparse.h" #include "oct-locbuf.h" #ifdef USE_64_BIT_IDX_T #define CCOLAMD_NAME(name) ccolamd_l ## name #define CSYMAMD_NAME(name) csymamd_l ## name #else #define CCOLAMD_NAME(name) ccolamd ## name #define CSYMAMD_NAME(name) csymamd ## name #endif DEFUN_DLD (ccolamd, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} ccolamd (@var{S})\n\ @deftypefnx {Loadable Function} {@var{p} =} ccolamd (@var{S}, @var{knobs})\n\ @deftypefnx {Loadable Function} {@var{p} =} ccolamd (@var{S}, @var{knobs}, @var{cmember})\n\ @deftypefnx {Loadable Function} {[@var{p}, @var{stats}] =} ccolamd (@dots{})\n\ \n\ Constrained column approximate minimum degree permutation.\n\ \n\ @code{@var{p} = ccolamd (@var{S})} returns the column approximate minimum\n\ degree permutation vector for the sparse matrix @var{S}. For a non-symmetric\n\ matrix @var{S}, @code{@var{S}(:, @var{p})} tends to have sparser\n\ LU@tie{}factors than @var{S}.\n\ @code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))} also tends to be\n\ sparser than @code{chol (@var{S}' * @var{S})}.\n\ @code{@var{p} = ccolamd (@var{S}, 1)} optimizes the ordering for\n\ @code{lu (@var{S}(:, @var{p}))}. The ordering is followed by a column\n\ elimination tree post-ordering.\n\ \n\ @var{knobs} is an optional 1-element to 5-element input vector, with a\n\ default value of @code{[0 10 10 1 0]} if not present or empty. Entries not\n\ present are set to their defaults.\n\ \n\ @table @code\n\ @item @var{knobs}(1)\n\ if nonzero, the ordering is optimized for @code{lu (S(:, p))}. It will be a\n\ poor ordering for @code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}.\n\ This is the most important knob for ccolamd.\n\ \n\ @item @var{knobs}(2)\n\ if @var{S} is m-by-n, rows with more than\n\ @code{max (16, @var{knobs}(2) * sqrt (n))} entries are ignored.\n\ \n\ @item @var{knobs}(3)\n\ columns with more than\n\ @code{max (16, @var{knobs}(3) * sqrt (min (@var{m}, @var{n})))} entries are\n\ ignored and ordered last in the output permutation\n\ (subject to the cmember constraints).\n\ \n\ @item @var{knobs}(4)\n\ if nonzero, aggressive absorption is performed.\n\ \n\ @item @var{knobs}(5)\n\ if nonzero, statistics and knobs are printed.\n\ \n\ @end table\n\ \n\ @var{cmember} is an optional vector of length @math{n}. It defines the\n\ constraints on the column ordering. If @code{@var{cmember}(j) = @var{c}},\n\ then column @var{j} is in constraint set @var{c} (@var{c} must be in the\n\ range 1 to n). In the output permutation @var{p}, all columns in set 1\n\ appear first, followed by all columns in set 2, and so on.\n\ @code{@var{cmember} = ones (1,n)} if not present or empty.\n\ @code{ccolamd (@var{S}, [], 1 : n)} returns @code{1 : n}\n\ \n\ @code{@var{p} = ccolamd (@var{S})} is about the same as\n\ @code{@var{p} = colamd (@var{S})}. @var{knobs} and its default values\n\ differ. @code{colamd} always does aggressive absorption, and it finds an\n\ ordering suitable for both @code{lu (@var{S}(:, @var{p}))} and @code{chol\n\ (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}; it cannot optimize its\n\ ordering for @code{lu (@var{S}(:, @var{p}))} to the extent that\n\ @code{ccolamd (@var{S}, 1)} can.\n\ \n\ @var{stats} is an optional 20-element output vector that provides data\n\ about the ordering and the validity of the input matrix @var{S}. Ordering\n\ statistics are in @code{@var{stats}(1 : 3)}. @code{@var{stats}(1)} and\n\ @code{@var{stats}(2)} are the number of dense or empty rows and columns\n\ ignored by @sc{ccolamd} and @code{@var{stats}(3)} is the number of garbage\n\ collections performed on the internal data structure used by @sc{ccolamd}\n\ (roughly of size @code{2.2 * nnz (@var{S}) + 4 * @var{m} + 7 * @var{n}}\n\ integers).\n\ \n\ @code{@var{stats}(4 : 7)} provide information if CCOLAMD was able to\n\ continue. The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if\n\ invalid. @code{@var{stats}(5)} is the rightmost column index that is\n\ unsorted or contains duplicate entries, or zero if no such column exists.\n\ @code{@var{stats}(6)} is the last seen duplicate or out-of-order row\n\ index in the column index given by @code{@var{stats}(5)}, or zero if no\n\ such row index exists. @code{@var{stats}(7)} is the number of duplicate\n\ or out-of-order row indices. @code{@var{stats}(8 : 20)} is always zero in\n\ the current version of @sc{ccolamd} (reserved for future use).\n\ \n\ The authors of the code itself are @nospell{S. Larimore, T. Davis}\n\ (Univ. of Florida) and @nospell{S. Rajamanickam} in collaboration with\n\ @nospell{J. Bilbert and E. Ng}. Supported by the National Science Foundation\n\ @nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from\n\ @nospell{Sandia} National Lab.\n\ See @url{http://www.cise.ufl.edu/research/sparse} for\n\ ccolamd, csymamd, amd, colamd, symamd, and other related orderings.\n\ @seealso{colamd, csymamd}\n\ @end deftypefn") { octave_value_list retval; #ifdef HAVE_CCOLAMD int nargin = args.length (); int spumoni = 0; if (nargout > 2 || nargin < 1 || nargin > 3) usage ("ccolamd: incorrect number of input and/or output arguments"); else { // Get knobs OCTAVE_LOCAL_BUFFER (double, knobs, CCOLAMD_KNOBS); CCOLAMD_NAME (_set_defaults) (knobs); // Check for user-passed knobs if (nargin > 1) { NDArray User_knobs = args(1).array_value (); int nel_User_knobs = User_knobs.numel (); if (nel_User_knobs > 0) knobs[CCOLAMD_LU] = (User_knobs(0) != 0); if (nel_User_knobs > 1) knobs[CCOLAMD_DENSE_ROW] = User_knobs(1); if (nel_User_knobs > 2) knobs[CCOLAMD_DENSE_COL] = User_knobs(2); if (nel_User_knobs > 3) knobs[CCOLAMD_AGGRESSIVE] = (User_knobs(3) != 0); if (nel_User_knobs > 4) spumoni = (User_knobs(4) != 0); // print knob settings if spumoni is set if (spumoni) { octave_stdout << "\nccolamd version " << CCOLAMD_MAIN_VERSION << "." << CCOLAMD_SUB_VERSION << ", " << CCOLAMD_DATE << ":\nknobs(1): " << User_knobs(0) << ", order for "; if (knobs[CCOLAMD_LU] != 0) octave_stdout << "lu (A)\n"; else octave_stdout << "chol (A'*A)\n"; if (knobs[CCOLAMD_DENSE_ROW] >= 0) octave_stdout << "knobs(2): " << User_knobs(1) << ", rows with > max (16," << knobs[CCOLAMD_DENSE_ROW] << "*sqrt (size(A,2)))" << " entries removed\n"; else octave_stdout << "knobs(2): " << User_knobs(1) << ", no dense rows removed\n"; if (knobs[CCOLAMD_DENSE_COL] >= 0) octave_stdout << "knobs(3): " << User_knobs(2) << ", cols with > max (16," << knobs[CCOLAMD_DENSE_COL] << "*sqrt (size(A)))" << " entries removed\n"; else octave_stdout << "knobs(3): " << User_knobs(2) << ", no dense columns removed\n"; if (knobs[CCOLAMD_AGGRESSIVE] != 0) octave_stdout << "knobs(4): " << User_knobs(3) << ", aggressive absorption: yes"; else octave_stdout << "knobs(4): " << User_knobs(3) << ", aggressive absorption: no"; octave_stdout << "knobs(5): " << User_knobs(4) << ", statistics and knobs printed\n"; } } octave_idx_type n_row, n_col, nnz; octave_idx_type *ridx, *cidx; SparseComplexMatrix scm; SparseMatrix sm; if (args(0).is_sparse_type ()) { if (args(0).is_complex_type ()) { scm = args(0). sparse_complex_matrix_value (); n_row = scm.rows (); n_col = scm.cols (); nnz = scm.nnz (); ridx = scm.xridx (); cidx = scm.xcidx (); } else { sm = args(0).sparse_matrix_value (); n_row = sm.rows (); n_col = sm.cols (); nnz = sm.nnz (); ridx = sm.xridx (); cidx = sm.xcidx (); } } else { if (args(0).is_complex_type ()) sm = SparseMatrix (real (args(0).complex_matrix_value ())); else sm = SparseMatrix (args(0).matrix_value ()); n_row = sm.rows (); n_col = sm.cols (); nnz = sm.nnz (); ridx = sm.xridx (); cidx = sm.xcidx (); } // Allocate workspace for ccolamd OCTAVE_LOCAL_BUFFER (octave_idx_type, p, n_col+1); for (octave_idx_type i = 0; i < n_col+1; i++) p[i] = cidx[i]; octave_idx_type Alen = CCOLAMD_NAME (_recommended) (nnz, n_row, n_col); OCTAVE_LOCAL_BUFFER (octave_idx_type, A, Alen); for (octave_idx_type i = 0; i < nnz; i++) A[i] = ridx[i]; OCTAVE_LOCAL_BUFFER (octave_idx_type, stats, CCOLAMD_STATS); if (nargin > 2) { NDArray in_cmember = args(2).array_value (); octave_idx_type cslen = in_cmember.numel (); OCTAVE_LOCAL_BUFFER (octave_idx_type, cmember, cslen); for (octave_idx_type i = 0; i < cslen; i++) // convert cmember from 1-based to 0-based cmember[i] = static_cast<octave_idx_type>(in_cmember(i) - 1); if (cslen != n_col) error ("ccolamd: CMEMBER must be of length equal to #cols of A"); else // Order the columns (destroys A) if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p, knobs, stats, cmember)) { CCOLAMD_NAME (_report) (stats) ; error ("ccolamd: internal error!"); return retval; } } else { // Order the columns (destroys A) if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p, knobs, stats, 0)) { CCOLAMD_NAME (_report) (stats) ; error ("ccolamd: internal error!"); return retval; } } // return the permutation vector NDArray out_perm (dim_vector (1, n_col)); for (octave_idx_type i = 0; i < n_col; i++) out_perm(i) = p[i] + 1; retval(0) = out_perm; // print stats if spumoni > 0 if (spumoni > 0) CCOLAMD_NAME (_report) (stats) ; // Return the stats vector if (nargout == 2) { NDArray out_stats (dim_vector (1, CCOLAMD_STATS)); for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++) out_stats(i) = stats[i] ; retval(1) = out_stats; // fix stats (5) and (6), for 1-based information on // jumbled matrix. note that this correction doesn't // occur if symamd returns FALSE out_stats (CCOLAMD_INFO1) ++ ; out_stats (CCOLAMD_INFO2) ++ ; } } #else error ("ccolamd: not available in this version of Octave"); #endif return retval; } DEFUN_DLD (csymamd, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} csymamd (@var{S})\n\ @deftypefnx {Loadable Function} {@var{p} =} csymamd (@var{S}, @var{knobs})\n\ @deftypefnx {Loadable Function} {@var{p} =} csymamd (@var{S}, @var{knobs}, @var{cmember})\n\ @deftypefnx {Loadable Function} {[@var{p}, @var{stats}] =} csymamd (@dots{})\n\ \n\ For a symmetric positive definite matrix @var{S}, return the permutation\n\ vector @var{p} such that @code{@var{S}(@var{p},@var{p})} tends to have a\n\ sparser Cholesky@tie{}factor than @var{S}.\n\ \n\ Sometimes @code{csymamd} works well for symmetric indefinite matrices too. \n\ The matrix @var{S} is assumed to be symmetric; only the strictly lower\n\ triangular part is referenced. @var{S} must be square. The ordering is\n\ followed by an elimination tree post-ordering.\n\ \n\ @var{knobs} is an optional 1-element to 3-element input vector, with a\n\ default value of @code{[10 1 0]}. Entries not present are set to their\n\ defaults.\n\ \n\ @table @code\n\ @item @var{knobs}(1)\n\ If @var{S} is n-by-n, then rows and columns with more than\n\ @code{max(16,@var{knobs}(1)*sqrt(n))} entries are ignored, and ordered\n\ last in the output permutation (subject to the cmember constraints).\n\ \n\ @item @var{knobs}(2)\n\ If nonzero, aggressive absorption is performed.\n\ \n\ @item @var{knobs}(3)\n\ If nonzero, statistics and knobs are printed.\n\ \n\ @end table\n\ \n\ @var{cmember} is an optional vector of length n. It defines the constraints\n\ on the ordering. If @code{@var{cmember}(j) = @var{S}}, then row/column j is\n\ in constraint set @var{c} (@var{c} must be in the range 1 to n). In the\n\ output permutation @var{p}, rows/columns in set 1 appear first, followed\n\ by all rows/columns in set 2, and so on. @code{@var{cmember} = ones (1,n)}\n\ if not present or empty. @code{csymamd (@var{S},[],1:n)} returns @code{1:n}.\n\ \n\ @code{@var{p} = csymamd (@var{S})} is about the same as\n\ @code{@var{p} = symamd (@var{S})}. @var{knobs} and its default values\n\ differ.\n\ \n\ @code{@var{stats}(4:7)} provide information if CCOLAMD was able to\n\ continue. The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if\n\ invalid. @code{@var{stats}(5)} is the rightmost column index that is\n\ unsorted or contains duplicate entries, or zero if no such column exists.\n\ @code{@var{stats}(6)} is the last seen duplicate or out-of-order row\n\ index in the column index given by @code{@var{stats}(5)}, or zero if no\n\ such row index exists. @code{@var{stats}(7)} is the number of duplicate\n\ or out-of-order row indices. @code{@var{stats}(8:20)} is always zero in\n\ the current version of @sc{ccolamd} (reserved for future use).\n\ \n\ The authors of the code itself are @nospell{S. Larimore, T. Davis}\n\ (Univ. of Florida) and @nospell{S. Rajamanickam} in collaboration with\n\ @nospell{J. Bilbert and E. Ng}. Supported by the National Science Foundation\n\ @nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from\n\ @nospell{Sandia} National Lab.\n\ See @url{http://www.cise.ufl.edu/research/sparse} for\n\ ccolamd, csymamd, amd, colamd, symamd, and other related orderings.\n\ @seealso{symamd, ccolamd}\n\ @end deftypefn") { octave_value_list retval; #if HAVE_CCOLAMD int nargin = args.length (); int spumoni = 0; if (nargout > 2 || nargin < 1 || nargin > 3) usage ("ccolamd: incorrect number of input and/or output arguments"); else { // Get knobs OCTAVE_LOCAL_BUFFER (double, knobs, CCOLAMD_KNOBS); CCOLAMD_NAME (_set_defaults) (knobs); // Check for user-passed knobs if (nargin > 1) { NDArray User_knobs = args(1).array_value (); int nel_User_knobs = User_knobs.numel (); if (nel_User_knobs > 0) knobs[CCOLAMD_DENSE_ROW] = User_knobs(0); if (nel_User_knobs > 0) knobs[CCOLAMD_AGGRESSIVE] = User_knobs(1); if (nel_User_knobs > 1) spumoni = static_cast<int> (User_knobs(2)); // print knob settings if spumoni is set if (spumoni) { octave_stdout << "\ncsymamd version " << CCOLAMD_MAIN_VERSION << "." << CCOLAMD_SUB_VERSION << ", " << CCOLAMD_DATE << "\n"; if (knobs[CCOLAMD_DENSE_ROW] >= 0) octave_stdout << "knobs(1): " << User_knobs(0) << ", rows/cols with > max (16," << knobs[CCOLAMD_DENSE_ROW] << "*sqrt (size(A,2)))" << " entries removed\n"; else octave_stdout << "knobs(1): " << User_knobs(0) << ", no dense rows/cols removed\n"; if (knobs[CCOLAMD_AGGRESSIVE] != 0) octave_stdout << "knobs(2): " << User_knobs(1) << ", aggressive absorption: yes"; else octave_stdout << "knobs(2): " << User_knobs(1) << ", aggressive absorption: no"; octave_stdout << "knobs(3): " << User_knobs(2) << ", statistics and knobs printed\n"; } } octave_idx_type n_row, n_col; octave_idx_type *ridx, *cidx; SparseMatrix sm; SparseComplexMatrix scm; if (args(0).is_sparse_type ()) { if (args(0).is_complex_type ()) { scm = args(0).sparse_complex_matrix_value (); n_row = scm.rows (); n_col = scm.cols (); ridx = scm.xridx (); cidx = scm.xcidx (); } else { sm = args(0).sparse_matrix_value (); n_row = sm.rows (); n_col = sm.cols (); ridx = sm.xridx (); cidx = sm.xcidx (); } } else { if (args(0).is_complex_type ()) sm = SparseMatrix (real (args(0).complex_matrix_value ())); else sm = SparseMatrix (args(0).matrix_value ()); n_row = sm.rows (); n_col = sm.cols (); ridx = sm.xridx (); cidx = sm.xcidx (); } if (n_row != n_col) { error ("csymamd: matrix S must be square"); return retval; } // Allocate workspace for symamd OCTAVE_LOCAL_BUFFER (octave_idx_type, perm, n_col+1); OCTAVE_LOCAL_BUFFER (octave_idx_type, stats, CCOLAMD_STATS); if (nargin > 2) { NDArray in_cmember = args(2).array_value (); octave_idx_type cslen = in_cmember.numel (); OCTAVE_LOCAL_BUFFER (octave_idx_type, cmember, cslen); for (octave_idx_type i = 0; i < cslen; i++) // convert cmember from 1-based to 0-based cmember[i] = static_cast<octave_idx_type>(in_cmember(i) - 1); if (cslen != n_col) error ("csymamd: CMEMBER must be of length equal to #cols of A"); else if (!CSYMAMD_NAME () (n_col, ridx, cidx, perm, knobs, stats, &calloc, &free, cmember, -1)) { CSYMAMD_NAME (_report) (stats) ; error ("csymamd: internal error!") ; return retval; } } else { if (!CSYMAMD_NAME () (n_col, ridx, cidx, perm, knobs, stats, &calloc, &free, 0, -1)) { CSYMAMD_NAME (_report) (stats) ; error ("csymamd: internal error!") ; return retval; } } // return the permutation vector NDArray out_perm (dim_vector (1, n_col)); for (octave_idx_type i = 0; i < n_col; i++) out_perm(i) = perm[i] + 1; retval(0) = out_perm; // Return the stats vector if (nargout == 2) { NDArray out_stats (dim_vector (1, CCOLAMD_STATS)); for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++) out_stats(i) = stats[i] ; retval(1) = out_stats; // fix stats (5) and (6), for 1-based information on // jumbled matrix. note that this correction doesn't // occur if symamd returns FALSE out_stats (CCOLAMD_INFO1) ++ ; out_stats (CCOLAMD_INFO2) ++ ; } // print stats if spumoni > 0 if (spumoni > 0) CSYMAMD_NAME (_report) (stats) ; // Return the stats vector if (nargout == 2) { NDArray out_stats (dim_vector (1, CCOLAMD_STATS)); for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++) out_stats(i) = stats[i] ; retval(1) = out_stats; // fix stats (5) and (6), for 1-based information on // jumbled matrix. note that this correction doesn't // occur if symamd returns FALSE out_stats (CCOLAMD_INFO1) ++ ; out_stats (CCOLAMD_INFO2) ++ ; } } #else error ("csymamd: not available in this version of Octave"); #endif return retval; }