Mercurial > hg > octave-nkf
view libinterp/dldfcn/dmperm.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | 075a5e2e1ba5 |
children | f90c8372b7ba |
line wrap: on
line source
/* Copyright (C) 2005-2015 David Bateman Copyright (C) 1998-2005 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" #include "oct-sparse.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "SparseQR.h" #include "SparseCmplxQR.h" #ifdef USE_64_BIT_IDX_T #define CXSPARSE_NAME(name) cs_dl ## name #else #define CXSPARSE_NAME(name) cs_di ## name #endif static RowVector put_int (octave_idx_type *p, octave_idx_type n) { RowVector ret (n); for (octave_idx_type i = 0; i < n; i++) ret.xelem (i) = p[i] + 1; return ret; } #if HAVE_CXSPARSE static octave_value_list dmperm_internal (bool rank, const octave_value arg, int nargout) { octave_value_list retval; octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); SparseMatrix m; SparseComplexMatrix cm; CXSPARSE_NAME () csm; csm.m = nr; csm.n = nc; csm.x = 0; csm.nz = -1; if (arg.is_real_type ()) { m = arg.sparse_matrix_value (); csm.nzmax = m.nnz (); csm.p = m.xcidx (); csm.i = m.xridx (); } else { cm = arg.sparse_complex_matrix_value (); csm.nzmax = cm.nnz (); csm.p = cm.xcidx (); csm.i = cm.xridx (); } if (!error_state) { if (nargout <= 1 || rank) { #if defined(CS_VER) && (CS_VER >= 2) octave_idx_type *jmatch = CXSPARSE_NAME (_maxtrans) (&csm, 0); #else octave_idx_type *jmatch = CXSPARSE_NAME (_maxtrans) (&csm); #endif if (rank) { octave_idx_type r = 0; for (octave_idx_type i = 0; i < nc; i++) if (jmatch[nr+i] >= 0) r++; retval(0) = static_cast<double>(r); } else retval(0) = put_int (jmatch + nr, nc); CXSPARSE_NAME (_free) (jmatch); } else { #if defined(CS_VER) && (CS_VER >= 2) CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm, 0); #else CXSPARSE_NAME (d) *dm = CXSPARSE_NAME(_dmperm) (&csm); #endif //retval(5) = put_int (dm->rr, 5); //retval(4) = put_int (dm->cc, 5); #if defined(CS_VER) && (CS_VER >= 2) retval(3) = put_int (dm->s, dm->nb+1); retval(2) = put_int (dm->r, dm->nb+1); retval(1) = put_int (dm->q, nc); retval(0) = put_int (dm->p, nr); #else retval(3) = put_int (dm->S, dm->nb+1); retval(2) = put_int (dm->R, dm->nb+1); retval(1) = put_int (dm->Q, nc); retval(0) = put_int (dm->P, nr); #endif CXSPARSE_NAME (_dfree) (dm); } } return retval; } #endif DEFUN_DLD (dmperm, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} dmperm (@var{S})\n\ @deftypefnx {Loadable Function} {[@var{p}, @var{q}, @var{r}, @var{S}] =} dmperm (@var{S})\n\ \n\ @cindex @nospell{Dulmage-Mendelsohn} decomposition\n\ Perform a @nospell{Dulmage-Mendelsohn} permutation of the sparse matrix\n\ @var{S}.\n\ \n\ With a single output argument @code{dmperm} performs the row permutations\n\ @var{p} such that @code{@var{S}(@var{p},:)} has no zero elements on the\n\ diagonal.\n\ \n\ Called with two or more output arguments, returns the row and column\n\ permutations, such that @code{@var{S}(@var{p}, @var{q})} is in block\n\ triangular form. The values of @var{r} and @var{S} define the boundaries\n\ of the blocks. If @var{S} is square then @code{@var{r} == @var{S}}.\n\ \n\ The method used is described in: @nospell{A. Pothen & C.-J. Fan.}\n\ @cite{Computing the Block Triangular Form of a Sparse Matrix}.\n\ ACM Trans. Math. Software, 16(4):303-324, 1990.\n\ @seealso{colamd, ccolamd}\n\ @end deftypefn") { int nargin = args.length (); octave_value_list retval; if (nargin != 1) { print_usage (); return retval; } #if HAVE_CXSPARSE retval = dmperm_internal (false, args(0), nargout); #else error ("dmperm: not available in this version of Octave"); #endif return retval; } /* %!testif HAVE_CXSPARSE %! n = 20; %! a = speye (n,n); %! a = a(randperm (n),:); %! assert (a(dmperm (a),:), speye (n)); %!testif HAVE_CXSPARSE %! n = 20; %! d = 0.2; %! a = tril (sprandn (n,n,d), -1) + speye (n,n); %! a = a(randperm (n), randperm (n)); %! [p,q,r,s] = dmperm (a); %! assert (tril (a(p,q), -1), sparse (n, n)); */ DEFUN_DLD (sprank, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} sprank (@var{S})\n\ @cindex structural rank\n\ \n\ Calculate the structural rank of the sparse matrix @var{S}.\n\ \n\ Note that only the structure of the matrix is used in this calculation based\n\ on a @nospell{Dulmage-Mendelsohn} permutation to block triangular form. As\n\ such the numerical rank of the matrix @var{S} is bounded by\n\ @code{sprank (@var{S}) >= rank (@var{S})}. Ignoring floating point errors\n\ @code{sprank (@var{S}) == rank (@var{S})}.\n\ @seealso{dmperm}\n\ @end deftypefn") { int nargin = args.length (); octave_value_list retval; if (nargin != 1) { print_usage (); return retval; } #if HAVE_CXSPARSE retval = dmperm_internal (true, args(0), nargout); #else error ("sprank: not available in this version of Octave"); #endif return retval; } /* %!testif HAVE_CXSPARSE %! assert (sprank (speye (20)), 20) %!testif HAVE_CXSPARSE %! assert (sprank ([1,0,2,0;2,0,4,0]), 2) %!error sprank (1,2) */