Mercurial > hg > octave-nkf
view libinterp/parse-tree/pt-assign.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | dd6345fd8a97 |
children | b10432a40432 |
line wrap: on
line source
/* Copyright (C) 1996-2015 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include <set> #include "defun.h" #include "error.h" #include "gripes.h" #include "input.h" #include "oct-obj.h" #include "oct-lvalue.h" #include "pager.h" #include "ov.h" #include "pt-arg-list.h" #include "pt-bp.h" #include "pt-assign.h" #include "pt-eval.h" #include "pt-walk.h" #include "utils.h" #include "variables.h" // Simple assignment expressions. tree_simple_assignment::tree_simple_assignment (tree_expression *le, tree_expression *re, bool plhs, int l, int c, octave_value::assign_op t) : tree_expression (l, c), lhs (le), rhs (re), preserve (plhs), etype (t) { } tree_simple_assignment::~tree_simple_assignment (void) { if (! preserve) delete lhs; delete rhs; } octave_value_list tree_simple_assignment::rvalue (int nargout) { octave_value_list retval; if (nargout > 1) error ("invalid number of output arguments for expression X = RHS"); else retval = rvalue1 (nargout); return retval; } octave_value tree_simple_assignment::rvalue1 (int) { octave_value retval; if (error_state) return retval; if (rhs) { octave_value rhs_val = rhs->rvalue1 (); if (! error_state) { if (rhs_val.is_undefined ()) { error ("value on right hand side of assignment is undefined"); return retval; } else { if (rhs_val.is_cs_list ()) { const octave_value_list lst = rhs_val.list_value (); if (! lst.empty ()) rhs_val = lst(0); else { error ("invalid number of elements on RHS of assignment"); return retval; } } try { octave_lvalue ult = lhs->lvalue (); if (ult.numel () != 1) gripe_nonbraced_cs_list_assignment (); if (! error_state) { ult.assign (etype, rhs_val); if (! error_state) { if (etype == octave_value::op_asn_eq) retval = rhs_val; else retval = ult.value (); if (print_result () && tree_evaluator::statement_printing_enabled ()) { // We clear any index here so that we can // get the new value of the referenced // object below, instead of the indexed // value (which should be the same as the // right hand side value). ult.clear_index (); octave_value lhs_val = ult.value (); if (! error_state) lhs_val.print_with_name (octave_stdout, lhs->name ()); } } } } catch (index_exception& e) { // problems with range, invalid index type etc. e.set_var (lhs->name ()); (*current_liboctave_error_with_id_handler) (e.id(), e.err()); } } } } return retval; } std::string tree_simple_assignment::oper (void) const { return octave_value::assign_op_as_string (etype); } tree_expression * tree_simple_assignment::dup (symbol_table::scope_id scope, symbol_table::context_id context) const { tree_simple_assignment *new_sa = new tree_simple_assignment (lhs ? lhs->dup (scope, context) : 0, rhs ? rhs->dup (scope, context) : 0, preserve, etype); new_sa->copy_base (*this); return new_sa; } void tree_simple_assignment::accept (tree_walker& tw) { tw.visit_simple_assignment (*this); } // Multi-valued assignment expressions. tree_multi_assignment::tree_multi_assignment (tree_argument_list *lst, tree_expression *r, bool plhs, int l, int c) : tree_expression (l, c), lhs (lst), rhs (r), preserve (plhs) { } tree_multi_assignment::~tree_multi_assignment (void) { if (! preserve) delete lhs; delete rhs; } octave_value tree_multi_assignment::rvalue1 (int nargout) { octave_value retval; const octave_value_list tmp = rvalue (nargout); if (! tmp.empty ()) retval = tmp(0); return retval; } // FIXME: this works, but it would look a little better if // it were broken up into a couple of separate functions. octave_value_list tree_multi_assignment::rvalue (int) { octave_value_list retval; if (error_state) return retval; if (rhs) { std::list<octave_lvalue> lvalue_list = lhs->lvalue_list (); if (error_state) return retval; octave_idx_type n_out = 0; for (std::list<octave_lvalue>::const_iterator p = lvalue_list.begin (); p != lvalue_list.end (); p++) n_out += p->numel (); // The following trick is used to keep rhs_val constant. const octave_value_list rhs_val1 = rhs->rvalue (n_out, &lvalue_list); const octave_value_list rhs_val = (rhs_val1.length () == 1 && rhs_val1(0).is_cs_list () ? rhs_val1(0).list_value () : rhs_val1); if (error_state) return retval; octave_idx_type k = 0; octave_idx_type n = rhs_val.length (); // To avoid copying per elements and possible optimizations, we // postpone joining the final values. std::list<octave_value_list> retval_list; tree_argument_list::iterator q = lhs->begin (); for (std::list<octave_lvalue>::iterator p = lvalue_list.begin (); p != lvalue_list.end (); p++) { tree_expression *lhs_elt = *q++; octave_lvalue ult = *p; octave_idx_type nel = ult.numel (); if (nel != 1) { // Huge kluge so that wrapper scripts with lines like // // [varargout{1:nargout}] = fcn (args); // // Will work the same as calling fcn directly when nargout // is 0 and fcn produces more than one output even when // nargout is 0. This only works if varargout has not yet // been defined. See also bug #43813. if (lvalue_list.size () == 1 && nel == 0 && n > 0 && ! ult.is_black_hole () && ult.is_undefined () && ult.index_type () == "{" && ult.index_is_empty ()) { // Convert undefined lvalue with empty index to a cell // array with a single value and indexed by 1 to // handle a single output. nel = 1; ult.define (Cell (1, 1)); ult.clear_index (); std::list<octave_value_list> idx; idx.push_back (octave_value_list (octave_value (1))); ult.set_index ("{", idx); } if (k + nel <= n) { // This won't do a copy. octave_value_list ovl = rhs_val.slice (k, nel); ult.assign (octave_value::op_asn_eq, octave_value (ovl, true)); if (! error_state) { retval_list.push_back (ovl); k += nel; } } else error ("some elements undefined in return list"); } else { if (k < n) { ult.assign (octave_value::op_asn_eq, rhs_val(k)); if (ult.is_black_hole ()) { k++; continue; } else if (! error_state) { retval_list.push_back (rhs_val(k)); k++; } } else { // This can happen for a function like // // function varargout = f () // varargout{1} = nargout; // endfunction // // called with // // [a, ~] = f (); // // Then the list of of RHS values will contain one // element but we are iterating over the list of all // RHS values. We shouldn't complain that a value we // don't need is missing from the list. if (ult.is_black_hole ()) { k++; continue; } else error ("element number %d undefined in return list", k+1); } } if (error_state) break; else if (print_result () && tree_evaluator::statement_printing_enabled ()) { // We clear any index here so that we can get // the new value of the referenced object below, // instead of the indexed value (which should be // the same as the right hand side value). ult.clear_index (); octave_value lhs_val = ult.value (); if (! error_state) lhs_val.print_with_name (octave_stdout, lhs_elt->name ()); } if (error_state) break; } // Concatenate return values. retval = retval_list; } return retval; } /* %!function varargout = f () %! varargout{1} = nargout; %!endfunction %! %!test %! [a, ~] = f (); %! assert (a, 2); %!test %! [a, ~, ~, ~, ~] = f (); %! assert (a, 5); */ std::string tree_multi_assignment::oper (void) const { return octave_value::assign_op_as_string (op_type ()); } tree_expression * tree_multi_assignment::dup (symbol_table::scope_id scope, symbol_table::context_id context) const { tree_multi_assignment *new_ma = new tree_multi_assignment (lhs ? lhs->dup (scope, context) : 0, rhs ? rhs->dup (scope, context) : 0, preserve); new_ma->copy_base (*this); return new_ma; } void tree_multi_assignment::accept (tree_walker& tw) { tw.visit_multi_assignment (*this); }