Mercurial > hg > octave-nkf
view liboctave/numeric/lo-mappers.cc @ 20750:3339c9bdfe6a
Activate FSAL property in dorpri timestepper
* scripts/ode/private/runge_kutta_45_dorpri.m: don't compute
first stage if values from previous iteration are passed.
* scripts/ode/private/integrate_adaptive.m: do not update
cmputed stages if timestep is rejected.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sat, 03 Oct 2015 07:32:50 +0200 |
parents | 3fa35defe495 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2015 John W. Eaton Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "lo-math.h" #include "lo-specfun.h" #include "lo-utils.h" #include "oct-cmplx.h" #include "f77-fcn.h" // double -> double mappers. // Both xtrunc and xround belong here so we can keep gnulib:: out of // lo-mappers.h. double xtrunc (double x) { return gnulib::trunc (x); } double xcopysign (double x, double y) { return gnulib::copysign (x, y); } double xfloor (double x) { return gnulib::floor (x); } double xround (double x) { return gnulib::round (x); } double xroundb (double x) { double t = xround (x); if (fabs (x - t) == 0.5) t = 2 * xtrunc (0.5 * t); return t; } double signum (double x) { double tmp = 0.0; if (x < 0.0) tmp = -1.0; else if (x > 0.0) tmp = 1.0; return xisnan (x) ? octave_NaN : tmp; } double xlog2 (double x) { return gnulib::log2 (x); } Complex xlog2 (const Complex& x) { #if defined (M_LN2) static double ln2 = M_LN2; #else static double ln2 = gnulib::log (2); #endif return std::log (x) / ln2; } double xexp2 (double x) { #if defined (HAVE_EXP2) return exp2 (x); #else #if defined (M_LN2) static double ln2 = M_LN2; #else static double ln2 = gnulib::log (2); #endif return exp (x * ln2); #endif } double xlog2 (double x, int& exp) { return gnulib::frexp (x, &exp); } Complex xlog2 (const Complex& x, int& exp) { double ax = std::abs (x); double lax = xlog2 (ax, exp); return (ax != lax) ? (x / ax) * lax : x; } // double -> bool mappers. #if ! defined(HAVE_CMATH_ISNAN) bool xisnan (double x) { return lo_ieee_isnan (x); } #endif #if ! defined(HAVE_CMATH_ISFINITE) bool xfinite (double x) { return lo_ieee_finite (x); } #endif #if ! defined(HAVE_CMATH_ISINF) bool xisinf (double x) { return lo_ieee_isinf (x); } #endif bool octave_is_NA (double x) { return lo_ieee_is_NA (x); } // (double, double) -> double mappers. // complex -> complex mappers. Complex acos (const Complex& x) { static Complex i (0, 1); Complex tmp; if (imag (x) == 0.0) { // If the imaginary part of X is 0, then avoid generating an // imaginary part of -0 for the expression 1-x*x. // This effectively chooses the same phase of the branch cut as Matlab. double xr = real (x); tmp = Complex (1.0 - xr*xr); } else tmp = 1.0 - x*x; return -i * log (x + i * sqrt (tmp)); } Complex acosh (const Complex& x) { return log (x + sqrt (x + 1.0) * sqrt (x - 1.0)); } Complex asin (const Complex& x) { static Complex i (0, 1); Complex tmp; if (imag (x) == 0.0) { // If the imaginary part of X is 0, then avoid generating an // imaginary part of -0 for the expression 1-x*x. // This effectively chooses the same phase of the branch cut as Matlab. double xr = real (x); tmp = Complex (1.0 - xr*xr); } else tmp = 1.0 - x*x; return -i * log (i*x + sqrt (tmp)); } Complex asinh (const Complex& x) { return log (x + sqrt (x*x + 1.0)); } Complex atan (const Complex& x) { static Complex i (0, 1); return i * log ((i + x) / (i - x)) / 2.0; } Complex atanh (const Complex& x) { return log ((1.0 + x) / (1.0 - x)) / 2.0; } // complex -> bool mappers. bool octave_is_NA (const Complex& x) { return (octave_is_NA (real (x)) || octave_is_NA (imag (x))); } bool octave_is_NaN_or_NA (const Complex& x) { return (xisnan (real (x)) || xisnan (imag (x))); } // (complex, complex) -> complex mappers. // FIXME: need to handle NA too? Complex xmin (const Complex& x, const Complex& y) { return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y); } Complex xmax (const Complex& x, const Complex& y) { return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y); } // float -> float mappers. // Both xtrunc and xround belong here so we can keep gnulib:: out of // lo-mappers.h. float xtrunc (float x) { return gnulib::truncf (x); } float xcopysign (float x, float y) { return gnulib::copysignf (x, y); } float xfloor (float x) { return gnulib::floorf (x); } float xround (float x) { return gnulib::roundf (x); } float xroundb (float x) { float t = xround (x); if (fabsf (x - t) == 0.5) t = 2 * xtrunc (0.5 * t); return t; } float signum (float x) { float tmp = 0.0; if (x < 0.0) tmp = -1.0; else if (x > 0.0) tmp = 1.0; return xisnan (x) ? octave_Float_NaN : tmp; } float xlog2 (float x) { return gnulib::log2f (x); } FloatComplex xlog2 (const FloatComplex& x) { #if defined (M_LN2) static float ln2 = M_LN2; #else static float ln2 = log (2); #endif return std::log (x) / ln2; } float xexp2 (float x) { #if defined (HAVE_EXP2F) return exp2f (x); #elif defined (HAVE_EXP2) return exp2 (x); #else #if defined (M_LN2) static float ln2 = M_LN2; #else static float ln2 = log2 (2); #endif return exp (x * ln2); #endif } float xlog2 (float x, int& exp) { return gnulib::frexpf (x, &exp); } FloatComplex xlog2 (const FloatComplex& x, int& exp) { float ax = std::abs (x); float lax = xlog2 (ax, exp); return (ax != lax) ? (x / ax) * lax : x; } // float -> bool mappers. #if ! defined(HAVE_CMATH_ISNANF) bool xisnan (float x) { return lo_ieee_isnan (x); } #endif #if ! defined(HAVE_CMATH_ISFINITEF) bool xfinite (float x) { return lo_ieee_finite (x); } #endif #if ! defined(HAVE_CMATH_ISINFF) bool xisinf (float x) { return lo_ieee_isinf (x); } #endif bool octave_is_NA (float x) { return lo_ieee_is_NA (x); } // (float, float) -> float mappers. // complex -> complex mappers. FloatComplex acos (const FloatComplex& x) { static FloatComplex i (0, 1); FloatComplex tmp; if (imag (x) == 0.0f) { // If the imaginary part of X is 0, then avoid generating an // imaginary part of -0 for the expression 1-x*x. // This effectively chooses the same phase of the branch cut as Matlab. float xr = real (x); tmp = FloatComplex (1.0f - xr*xr); } else tmp = 1.0f - x*x; return -i * log (x + i * sqrt (tmp)); } FloatComplex acosh (const FloatComplex& x) { return log (x + sqrt (x + 1.0f) * sqrt (x - 1.0f)); } FloatComplex asin (const FloatComplex& x) { static FloatComplex i (0, 1); FloatComplex tmp; if (imag (x) == 0.0f) { // If the imaginary part of X is 0, then avoid generating an // imaginary part of -0 for the expression 1-x*x. // This effectively chooses the same phase of the branch cut as Matlab. float xr = real (x); tmp = FloatComplex (1.0f - xr*xr); } else tmp = 1.0f - x*x; return -i * log (i*x + sqrt (tmp)); } FloatComplex asinh (const FloatComplex& x) { return log (x + sqrt (x*x + 1.0f)); } FloatComplex atan (const FloatComplex& x) { static FloatComplex i (0, 1); return i * log ((i + x) / (i - x)) / 2.0f; } FloatComplex atanh (const FloatComplex& x) { return log ((1.0f + x) / (1.0f - x)) / 2.0f; } // complex -> bool mappers. bool octave_is_NA (const FloatComplex& x) { return (octave_is_NA (real (x)) || octave_is_NA (imag (x))); } bool octave_is_NaN_or_NA (const FloatComplex& x) { return (xisnan (real (x)) || xisnan (imag (x))); } // (complex, complex) -> complex mappers. // FIXME: need to handle NA too? FloatComplex xmin (const FloatComplex& x, const FloatComplex& y) { return abs (x) <= abs (y) ? x : (xisnan (x) ? x : y); } FloatComplex xmax (const FloatComplex& x, const FloatComplex& y) { return abs (x) >= abs (y) ? x : (xisnan (x) ? x : y); } Complex rc_acos (double x) { return fabs (x) > 1.0 ? acos (Complex (x)) : Complex (acos (x)); } FloatComplex rc_acos (float x) { return fabsf (x) > 1.0f ? acos (FloatComplex (x)) : FloatComplex (acosf (x)); } Complex rc_acosh (double x) { return x < 1.0 ? acosh (Complex (x)) : Complex (acosh (x)); } FloatComplex rc_acosh (float x) { return x < 1.0f ? acosh (FloatComplex (x)) : FloatComplex (acoshf (x)); } Complex rc_asin (double x) { return fabs (x) > 1.0 ? asin (Complex (x)) : Complex (asin (x)); } FloatComplex rc_asin (float x) { return fabsf (x) > 1.0f ? asin (FloatComplex (x)) : FloatComplex (asinf (x)); } Complex rc_atanh (double x) { return fabs (x) > 1.0 ? atanh (Complex (x)) : Complex (atanh (x)); } FloatComplex rc_atanh (float x) { return fabsf (x) > 1.0f ? atanh (FloatComplex (x)) : FloatComplex (atanhf (x)); } Complex rc_log (double x) { const double pi = 3.14159265358979323846; return x < 0.0 ? Complex (gnulib::log (-x), pi) : Complex (gnulib::log (x)); } FloatComplex rc_log (float x) { const float pi = 3.14159265358979323846f; return (x < 0.0f ? FloatComplex (gnulib::logf (-x), pi) : FloatComplex (gnulib::logf (x))); } Complex rc_log2 (double x) { const double pil2 = 4.53236014182719380962; // = pi / log(2) return x < 0.0 ? Complex (xlog2 (-x), pil2) : Complex (xlog2 (x)); } FloatComplex rc_log2 (float x) { const float pil2 = 4.53236014182719380962f; // = pi / log(2) return x < 0.0f ? FloatComplex (xlog2 (-x), pil2) : FloatComplex (xlog2 (x)); } Complex rc_log10 (double x) { const double pil10 = 1.36437635384184134748; // = pi / log(10) return x < 0.0 ? Complex (log10 (-x), pil10) : Complex (log10 (x)); } FloatComplex rc_log10 (float x) { const float pil10 = 1.36437635384184134748f; // = pi / log(10) return x < 0.0f ? FloatComplex (log10 (-x), pil10) : FloatComplex (log10f (x)); } Complex rc_sqrt (double x) { return x < 0.0 ? Complex (0.0, sqrt (-x)) : Complex (sqrt (x)); } FloatComplex rc_sqrt (float x) { return x < 0.0f ? FloatComplex (0.0f, sqrtf (-x)) : FloatComplex (sqrtf (x)); } bool xnegative_sign (double x) { return __lo_ieee_signbit (x); } bool xnegative_sign (float x) { return __lo_ieee_float_signbit (x); } // Convert X to the nearest integer value. Should not pass NaN to // this function. // Sometimes you need a large integer, but not always. octave_idx_type NINTbig (double x) { if (x > std::numeric_limits<octave_idx_type>::max ()) return std::numeric_limits<octave_idx_type>::max (); else if (x < std::numeric_limits<octave_idx_type>::min ()) return std::numeric_limits<octave_idx_type>::min (); else return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5)); } octave_idx_type NINTbig (float x) { if (x > std::numeric_limits<octave_idx_type>::max ()) return std::numeric_limits<octave_idx_type>::max (); else if (x < std::numeric_limits<octave_idx_type>::min ()) return std::numeric_limits<octave_idx_type>::min (); else return static_cast<octave_idx_type> ((x > 0) ? (x + 0.5) : (x - 0.5)); } int NINT (double x) { if (x > std::numeric_limits<int>::max ()) return std::numeric_limits<int>::max (); else if (x < std::numeric_limits<int>::min ()) return std::numeric_limits<int>::min (); else return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5)); } int NINT (float x) { if (x > std::numeric_limits<int>::max ()) return std::numeric_limits<int>::max (); else if (x < std::numeric_limits<int>::min ()) return std::numeric_limits<int>::min (); else return static_cast<int> ((x > 0) ? (x + 0.5) : (x - 0.5)); }