Mercurial > hg > octave-nkf
view libcruft/quadpack/qagpe.f @ 15063:36cbcc37fdb8
Refactor configure.ac to make it more understandable.
Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
* configure.ac, m4/acinclude.m4: Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 31 Jul 2012 10:28:51 -0700 |
parents | 96ba591be50f |
children |
line wrap: on
line source
subroutine qagpe(f,a,b,npts2,points,epsabs,epsrel,limit,result, * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin, * last) c***begin prologue qagpe c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a2a1 c***keywords automatic integrator, general-purpose, c singularities at user specified points, c extrapolation, globally adaptive. c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b),hopefully c satisfying following claim for accuracy abs(i-result).le. c max(epsabs,epsrel*abs(i)). break points of the integration c interval, where local difficulties of the integrand may c occur(e.g. singularities,discontinuities),provided by user. c***description c c computation of a definite integral c standard fortran subroutine c real version c c parameters c on entry c f - subroutine f(x,ierr,result) defining the integrand c function f(x). the actual name for f needs to be c declared e x t e r n a l in the driver program. c c a - real c lower limit of integration c c b - real c upper limit of integration c c npts2 - integer c number equal to two more than the number of c user-supplied break points within the integration c range, npts2.ge.2. c if npts2.lt.2, the routine will end with ier = 6. c c points - real c vector of dimension npts2, the first (npts2-2) c elements of which are the user provided break c points. if these points do not constitute an c ascending sequence there will be an automatic c sorting. c c epsabs - real c absolute accuracy requested c epsrel - real c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c limit - integer c gives an upper bound on the number of subintervals c in the partition of (a,b), limit.ge.npts2 c if limit.lt.npts2, the routine will end with c ier = 6. c c on return c result - real c approximation to the integral c c abserr - real c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine. c the estimates for integral and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking the according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. if c the position of a local difficulty can be c determined (i.e. singularity, c discontinuity within the interval), it c should be supplied to the routine as an c element of the vector points. if necessary c an appropriate special-purpose integrator c must be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. it is presumed that c the requested tolerance cannot be c achieved, and that the returned result is c the best which can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier.gt.0. c = 6 the input is invalid because c npts2.lt.2 or c break points are specified outside c the integration range or c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) c or limit.lt.npts2. c result, abserr, neval, last, rlist(1), c and elist(1) are set to zero. alist(1) and c blist(1) are set to a and b respectively. c c alist - real c vector of dimension at least limit, the first c last elements of which are the left end points c of the subintervals in the partition of the given c integration range (a,b) c c blist - real c vector of dimension at least limit, the first c last elements of which are the right end points c of the subintervals in the partition of the given c integration range (a,b) c c rlist - real c vector of dimension at least limit, the first c last elements of which are the integral c approximations on the subintervals c c elist - real c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c pts - real c vector of dimension at least npts2, containing the c integration limits and the break points of the c interval in ascending sequence. c c level - integer c vector of dimension at least limit, containing the c subdivision levels of the subinterval, i.e. if c (aa,bb) is a subinterval of (p1,p2) where p1 as c well as p2 is a user-provided break point or c integration limit, then (aa,bb) has level l if c abs(bb-aa) = abs(p2-p1)*2**(-l). c c ndin - integer c vector of dimension at least npts2, after first c integration over the intervals (pts(i)),pts(i+1), c i = 0,1, ..., npts2-2, the error estimates over c some of the intervals may have been increased c artificially, in order to put their subdivision c forward. if this happens for the subinterval c numbered k, ndin(k) is put to 1, otherwise c ndin(k) = 0. c c iord - integer c vector of dimension at least limit, the first k c elements of which are pointers to the c error estimates over the subintervals, c such that elist(iord(1)), ..., elist(iord(k)) c form a decreasing sequence, with k = last c if last.le.(limit/2+2), and k = limit+1-last c otherwise c c last - integer c number of subintervals actually produced in the c subdivisions process c c***references (none) c***routines called qelg,qk21,qpsrt,r1mach c***end prologue qagpe real a,abseps,abserr,alist,area,area1,area12,area2,a1, * a2,b,blist,b1,b2,correc,defabs,defab1,defab2, * dres,r1mach,elist,epmach,epsabs,epsrel,erlarg,erlast,errbnd, * errmax,error1,erro12,error2,errsum,ertest,oflow,points,pts, * resa,resabs,reseps,result,res3la,rlist,rlist2,sign,temp, * uflow integer i,id,ier,ierro,ind1,ind2,iord,ip1,iroff1,iroff2, * iroff3,j,jlow,jupbnd,k,ksgn,ktmin,last,levcur,level,levmax, * limit,maxerr,ndin,neval,nint,nintp1,npts,npts2,nres, * nrmax,numrl2 logical extrap,noext c c dimension alist(limit),blist(limit),elist(limit),iord(limit), * level(limit),ndin(npts2),points(npts2),pts(npts2),res3la(3), * rlist(limit),rlist2(52) c external f c c the dimension of rlist2 is determined by the value of c limexp in subroutine epsalg (rlist2 should be of dimension c (limexp+2) at least). c c c list of major variables c ----------------------- c c alist - list of left end points of all subintervals c considered up to now c blist - list of right end points of all subintervals c considered up to now c rlist(i) - approximation to the integral over c (alist(i),blist(i)) c rlist2 - array of dimension at least limexp+2 c containing the part of the epsilon table which c is still needed for further computations c elist(i) - error estimate applying to rlist(i) c maxerr - pointer to the interval with largest error c estimate c errmax - elist(maxerr) c erlast - error on the interval currently subdivided c (before that subdivision has taken place) c area - sum of the integrals over the subintervals c errsum - sum of the errors over the subintervals c errbnd - requested accuracy max(epsabs,epsrel* c abs(result)) c *****1 - variable for the left subinterval c *****2 - variable for the right subinterval c last - index for subdivision c nres - number of calls to the extrapolation routine c numrl2 - number of elements in rlist2. if an c appropriate approximation to the compounded c integral has been obtained, it is put in c rlist2(numrl2) after numrl2 has been increased c by one. c erlarg - sum of the errors over the intervals larger c than the smallest interval considered up to now c extrap - logical variable denoting that the routine c is attempting to perform extrapolation. i.e. c before subdividing the smallest interval we c try to decrease the value of erlarg. c noext - logical variable denoting that extrapolation is c no longer allowed (true-value) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c oflow is the largest positive magnitude. c c***first executable statement qagpe epmach = r1mach(4) c c test on validity of parameters c ----------------------------- c ier = 0 neval = 0 last = 0 result = 0.0e+00 abserr = 0.0e+00 alist(1) = a blist(1) = b rlist(1) = 0.0e+00 elist(1) = 0.0e+00 iord(1) = 0 level(1) = 0 npts = npts2-2 if(npts2.lt.2.or.limit.le.npts.or.(epsabs.le.0.0e+00.and. * epsrel.lt.amax1(0.5e+02*epmach,0.5e-14))) ier = 6 if(ier.eq.6) go to 210 c c if any break points are provided, sort them into an c ascending sequence. c sign = 1.0e+00 if(a.gt.b) sign = -1.0e+00 pts(1) = amin1(a,b) if(npts.eq.0) go to 15 do 10 i = 1,npts pts(i+1) = points(i) 10 continue 15 pts(npts+2) = amax1(a,b) nint = npts+1 a1 = pts(1) if(npts.eq.0) go to 40 nintp1 = nint+1 do 20 i = 1,nint ip1 = i+1 do 20 j = ip1,nintp1 if(pts(i).le.pts(j)) go to 20 temp = pts(i) pts(i) = pts(j) pts(j) = temp 20 continue if(pts(1).ne.amin1(a,b).or.pts(nintp1).ne. * amax1(a,b)) ier = 6 if(ier.eq.6) go to 999 c c compute first integral and error approximations. c ------------------------------------------------ c 40 resabs = 0.0e+00 do 50 i = 1,nint b1 = pts(i+1) call qk21(f,a1,b1,area1,error1,defabs,resa,ier) if (ier.lt.0) return abserr = abserr+error1 result = result+area1 ndin(i) = 0 if(error1.eq.resa.and.error1.ne.0.0e+00) ndin(i) = 1 resabs = resabs+defabs level(i) = 0 elist(i) = error1 alist(i) = a1 blist(i) = b1 rlist(i) = area1 iord(i) = i a1 = b1 50 continue errsum = 0.0e+00 do 55 i = 1,nint if(ndin(i).eq.1) elist(i) = abserr errsum = errsum+elist(i) 55 continue c c test on accuracy. c last = nint neval = 21*nint dres = abs(result) errbnd = amax1(epsabs,epsrel*dres) if(abserr.le.0.1e+03*epmach*resabs.and.abserr.gt. * errbnd) ier = 2 if(nint.eq.1) go to 80 do 70 i = 1,npts jlow = i+1 ind1 = iord(i) do 60 j = jlow,nint ind2 = iord(j) if(elist(ind1).gt.elist(ind2)) go to 60 ind1 = ind2 k = j 60 continue if(ind1.eq.iord(i)) go to 70 iord(k) = iord(i) iord(i) = ind1 70 continue if(limit.lt.npts2) ier = 1 80 if(ier.ne.0.or.abserr.le.errbnd) go to 999 c c initialization c -------------- c rlist2(1) = result maxerr = iord(1) errmax = elist(maxerr) area = result nrmax = 1 nres = 0 numrl2 = 1 ktmin = 0 extrap = .false. noext = .false. erlarg = errsum ertest = errbnd levmax = 1 iroff1 = 0 iroff2 = 0 iroff3 = 0 ierro = 0 uflow = r1mach(1) oflow = r1mach(2) abserr = oflow ksgn = -1 if(dres.ge.(0.1e+01-0.5e+02*epmach)*resabs) ksgn = 1 c c main do-loop c ------------ c do 160 last = npts2,limit c c bisect the subinterval with the nrmax-th largest c error estimate. c levcur = level(maxerr)+1 a1 = alist(maxerr) b1 = 0.5e+00*(alist(maxerr)+blist(maxerr)) a2 = b1 b2 = blist(maxerr) erlast = errmax call qk21(f,a1,b1,area1,error1,resa,defab1,ier) if (ier.lt.0) return call qk21(f,a2,b2,area2,error2,resa,defab2,ier) if (ier.lt.0) return c c improve previous approximations to integral c and error and test for accuracy. c neval = neval+42 area12 = area1+area2 erro12 = error1+error2 errsum = errsum+erro12-errmax area = area+area12-rlist(maxerr) if(defab1.eq.error1.or.defab2.eq.error2) go to 95 if(abs(rlist(maxerr)-area12).gt.0.1e-04*abs(area12) * .or.erro12.lt.0.99e+00*errmax) go to 90 if(extrap) iroff2 = iroff2+1 if(.not.extrap) iroff1 = iroff1+1 90 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 95 level(maxerr) = levcur level(last) = levcur rlist(maxerr) = area1 rlist(last) = area2 errbnd = amax1(epsabs,epsrel*abs(area)) c c test for roundoff error and eventually c set error flag. c if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 if(iroff2.ge.5) ierro = 3 c c set error flag in the case that the number of c subintervals equals limit. c if(last.eq.limit) ier = 1 c c set error flag in the case of bad integrand behaviour c at a point of the integration range c if(amax1(abs(a1),abs(b2)).le.(0.1e+01+0.1e+03*epmach)* * (abs(a2)+0.1e+04*uflow)) ier = 4 c c append the newly-created intervals to the list. c if(error2.gt.error1) go to 100 alist(last) = a2 blist(maxerr) = b1 blist(last) = b2 elist(maxerr) = error1 elist(last) = error2 go to 110 100 alist(maxerr) = a2 alist(last) = a1 blist(last) = b1 rlist(maxerr) = area2 rlist(last) = area1 elist(maxerr) = error2 elist(last) = error1 c c call subroutine qpsrt to maintain the descending ordering c in the list of error estimates and select the c subinterval with nrmax-th largest error estimate (to be c bisected next). c 110 call qpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) c ***jump out of do-loop if(errsum.le.errbnd) go to 190 c ***jump out of do-loop if(ier.ne.0) go to 170 if(noext) go to 160 erlarg = erlarg-erlast if(levcur+1.le.levmax) erlarg = erlarg+erro12 if(extrap) go to 120 c c test whether the interval to be bisected next is the c smallest interval. c if(level(maxerr)+1.le.levmax) go to 160 extrap = .true. nrmax = 2 120 if(ierro.eq.3.or.erlarg.le.ertest) go to 140 c c the smallest interval has the largest error. c before bisecting decrease the sum of the errors c over the larger intervals (erlarg) and perform c extrapolation. c id = nrmax jupbnd = last if(last.gt.(2+limit/2)) jupbnd = limit+3-last do 130 k = id,jupbnd maxerr = iord(nrmax) errmax = elist(maxerr) c ***jump out of do-loop if(level(maxerr)+1.le.levmax) go to 160 nrmax = nrmax+1 130 continue c c perform extrapolation. c 140 numrl2 = numrl2+1 rlist2(numrl2) = area if(numrl2.le.2) go to 155 call qelg(numrl2,rlist2,reseps,abseps,res3la,nres) ktmin = ktmin+1 if(ktmin.gt.5.and.abserr.lt.0.1e-02*errsum) ier = 5 if(abseps.ge.abserr) go to 150 ktmin = 0 abserr = abseps result = reseps correc = erlarg ertest = amax1(epsabs,epsrel*abs(reseps)) c ***jump out of do-loop if(abserr.lt.ertest) go to 170 c c prepare bisection of the smallest interval. c 150 if(numrl2.eq.1) noext = .true. if(ier.ge.5) go to 170 155 maxerr = iord(1) errmax = elist(maxerr) nrmax = 1 extrap = .false. levmax = levmax+1 erlarg = errsum 160 continue c c set the final result. c --------------------- c c 170 if(abserr.eq.oflow) go to 190 if((ier+ierro).eq.0) go to 180 if(ierro.eq.3) abserr = abserr+correc if(ier.eq.0) ier = 3 if(result.ne.0.0e+00.and.area.ne.0.0e+00)go to 175 if(abserr.gt.errsum)go to 190 if(area.eq.0.0e+00) go to 210 go to 180 175 if(abserr/abs(result).gt.errsum/abs(area))go to 190 c c test on divergence. c 180 if(ksgn.eq.(-1).and.amax1(abs(result),abs(area)).le. * resabs*0.1e-01) go to 210 if(0.1e-01.gt.(result/area).or.(result/area).gt.0.1e+03.or. * errsum.gt.abs(area)) ier = 6 go to 210 c c compute global integral sum. c 190 result = 0.0e+00 do 200 k = 1,last result = result+rlist(k) 200 continue abserr = errsum 210 if(ier.gt.2) ier = ier - 1 result = result*sign 999 return end