view scripts/geometry/inpolygon.m @ 15063:36cbcc37fdb8

Refactor configure.ac to make it more understandable. Use common syntax for messages in config.h Correct typos, refer to libraries in all caps, use two spaces after period. Follow Autoconf guidelines and place general tests before specific tests. * configure.ac, m4/acinclude.m4: Use common syntax for messages in config.h Correct typos, refer to libraries in all caps, use two spaces after period. Follow Autoconf guidelines and place general tests before specific tests.
author Rik <rik@octave.org>
date Tue, 31 Jul 2012 10:28:51 -0700
parents 5d3a684236b0
children f4c8c66faf34
line wrap: on
line source

## Copyright (C) 2006-2012 Frederick (Rick) A Niles
##               and S�ren Hauberg
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
##
## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, determine
## if the points @code{(@var{x}, @var{y})} are inside or outside the polygon.
## The variables @var{x}, @var{y}, must have the same dimension.  The optional
## output @var{on} gives the points that are on the polygon.
##
## @end deftypefn

## Author: Frederick (Rick) A Niles <niles@rickniles.com>
## Created: 14 November 2006

## Vectorized by S�ren Hauberg <soren@hauberg.org>

## The method for determining if a point is in in a polygon is based on
## the algorithm shown on
## http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ and is
## credited to Randolph Franklin.

function [in, on] = inpolygon (x, y, xv, yv)

  if (nargin != 4)
    print_usage ();
  endif

  if (! (isreal (x) && isreal (y) && ismatrix (y) && ismatrix (y)
         && size_equal (x, y)))
    error ("inpolygon: first two arguments must be real matrices of same size");
  elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv)
             && size_equal (xv, yv)))
    error ("inpolygon: last two arguments must be real vectors of same size");
  endif

  npol = length (xv);
  do_boundary = (nargout >= 2);

  in = zeros (size (x), "logical");
  if (do_boundary)
    on = zeros (size (x), "logical");
  endif

  j = npol;
  for i = 1 : npol
    delta_xv = xv(j) - xv(i);
    delta_yv = yv(j) - yv(i);
    ## distance = [distance from (x,y) to edge] * length(edge)
    distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv;
    ##
    ## is y between the y-values of edge i,j
    ##        AND (x,y) on the left of the edge ?
    idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i)))
            & 0 < distance.*delta_yv);
    in (idx1) = !in (idx1);

    ## Check if (x,y) are actually on the boundary of the polygon.
    if (do_boundary)
       idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i)))
               & ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i)))
               & (0 == distance | !delta_xv));
       on (idx2) = true;
    endif
    j = i;
  endfor

endfunction


%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!        1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!        0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!        0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!        0.60628 ];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g")
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");

%!demo
%!  xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!         1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!         0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ...
%!         0.73295, 0.05840 ];
%!  yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!         0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!         0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ...
%!         0.82096, 0.60628];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & !on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "@g");
%! plot (x(!in), y(!in), "@m");
%! plot (x(on), y(on), "@b");
%! hold off;
%! disp ("Green points are inside polygon, magenta are outside,");
%! disp ("and blue are on boundary.");

%!test
%! [in, on] = inpolygon ([1, 0], [1, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! assert (in, [false, true]);
%! assert (on, [true, false]);

%% Test input validation
%!error inpolygon ()
%!error inpolygon (1, 2)
%!error inpolygon (1, 2, 3)
%!error inpolygon (1, [1,2], [3, 4], [5, 6])
%!error inpolygon ([1,2], [3, 4], [5, 6], 1)