view scripts/optimization/fzero.m @ 15063:36cbcc37fdb8

Refactor configure.ac to make it more understandable. Use common syntax for messages in config.h Correct typos, refer to libraries in all caps, use two spaces after period. Follow Autoconf guidelines and place general tests before specific tests. * configure.ac, m4/acinclude.m4: Use common syntax for messages in config.h Correct typos, refer to libraries in all caps, use two spaces after period. Follow Autoconf guidelines and place general tests before specific tests.
author Rik <rik@octave.org>
date Tue, 31 Jul 2012 10:28:51 -0700
parents 86854d032a37
children 7eff3032d144
line wrap: on
line source

## Copyright (C) 2008-2012 VZLU Prague, a.s.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.
##
## Author: Jaroslav Hajek <highegg@gmail.com>

## -*- texinfo -*-
## @deftypefn  {Function File} {} fzero (@var{fun}, @var{x0})
## @deftypefnx {Function File} {} fzero (@var{fun}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{})
## Find a zero of a univariate function.
##
## @var{fun} is a function handle, inline function, or string
## containing the name of the function to evaluate.
## @var{x0} should be a two-element vector specifying two points which
## bracket a zero.  In other words, there must be a change in sign of the
## function between @var{x0}(1) and @var{x0}(2).  More mathematically, the
## following must hold
##
## @example
## sign (@var{fun}(@var{x0}(1))) * sign (@var{fun}(@var{x0}(2))) <= 0
## @end example
##
## If @var{x0} is a single scalar then several nearby and distant
## values are probed in an attempt to obtain a valid bracketing.  If this
## is not successful, the function fails.
## @var{options} is a structure specifying additional options.
## Currently, @code{fzero}
## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"},
## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}.
## For a description of these options, see @ref{doc-optimset,,optimset}.
##
## On exit, the function returns @var{x}, the approximate zero point
## and @var{fval}, the function value thereof.
## @var{info} is an exit flag that can have these values:
##
## @itemize
## @item 1
##  The algorithm converged to a solution.
##
## @item 0
##  Maximum number of iterations or function evaluations has been reached.
##
## @item -1
## The algorithm has been terminated from user output function.
##
## @item -5
## The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm.  Fields in the structure are:
##
## @itemize
## @item iterations
##  Number of iterations through loop.
##
## @item nfev
##  Number of function evaluations.
##
## @item bracketx
##  A two-element vector with the final bracketing of the zero along the x-axis.
##
## @item brackety
##  A two-element vector with the final bracketing of the zero along the y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn

## This is essentially the ACM algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions
## on Mathematical Software, Vol. 21, No. 3, September 1995. Although
## the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure. Further, this approach reduces
## the need for external functions and error handling. The algorithm has
## also been slightly modified.

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fzero");

function [x, fval, info, output] = fzero (fun, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults'))
    x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8,
                  "OutputFcn", [], "FunValCheck", "off");
    return;
  endif

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (ischar (fun))
    fun = str2func (fun, "global");
  endif

  ## TODO
  ## displev = optimget (options, "Display", "notify");
  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", 1e-8);
  maxiter = optimget (options, "MaxIter", Inf);
  maxfev = optimget (options, "MaxFunEvals", Inf);

  persistent mu = 0.5;

  if (funvalchk)
    ## Replace fun with a guarded version.
    fun = @(x) guarded_eval (fun, x);
  endif

  ## The default exit flag if exceeded number of iterations.
  info = 0;
  niter = 0;
  nfev = 0;

  x = fval = a = fa = b = fb = NaN;
  eps = eps (class (x0));

  ## Prepare...
  a = x0(1);
  fa = fun (a);
  nfev = 1;
  if (length (x0) > 1)
    b = x0(2);
    fb = fun (b);
    nfev += 1;
  else
    ## Try to get b.
    if (a == 0)
      aa = 1;
    else
      aa = a;
    endif
    for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa]
      fb = fun (b); nfev += 1;
      if (sign (fa) * sign (fb) <= 0)
        break;
      endif
    endfor
  endif

  if (b < a)
    u = a;
    a = b;
    b = u;

    fu = fa;
    fa = fb;
    fb = fu;
  endif

  if (! (sign (fa) * sign (fb) <= 0))
    error ("fzero:bracket", "fzero: not a valid initial bracketing");
  endif

  slope0 = (fb - fa) / (b - a);

  if (fa == 0)
    b = a;
    fb = fa;
  elseif (fb == 0)
    a = b;
    fa = fb;
  endif

  itype = 1;

  if (abs (fa) < abs (fb))
    u = a; fu = fa;
  else
    u = b; fu = fb;
  endif

  d = e = u;
  fd = fe = fu;
  mba = mu*(b - a);
  while (niter < maxiter && nfev < maxfev)
    switch (itype)
    case 1
      ## The initial test.
      if (b - a <= 2*(2 * abs (u) * eps + tolx))
        x = u; fval = fu;
        info = 1;
        break;
      endif
      if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa))
        ## Secant step.
        c = u - (a - b) / (fa - fb) * fu;
      else
        ## Bisection step.
        c = 0.5*(a + b);
      endif
      d = u; fd = fu;
      itype = 5;
    case {2, 3}
      l = length (unique ([fa, fb, fd, fe]));
      if (l == 4)
        ## Inverse cubic interpolation.
        q11 = (d - e) * fd / (fe - fd);
        q21 = (b - d) * fb / (fd - fb);
        q31 = (a - b) * fa / (fb - fa);
        d21 = (b - d) * fd / (fd - fb);
        d31 = (a - b) * fb / (fb - fa);
        q22 = (d21 - q11) * fb / (fe - fb);
        q32 = (d31 - q21) * fa / (fd - fa);
        d32 = (d31 - q21) * fd / (fd - fa);
        q33 = (d32 - q22) * fa / (fe - fa);
        c = a + q31 + q32 + q33;
      endif
      if (l < 4 || sign (c - a) * sign (c - b) > 0)
        ## Quadratic interpolation + newton.
        a0 = fa;
        a1 = (fb - fa)/(b - a);
        a2 = ((fd - fb)/(d - b) - a1) / (d - a);
        ## Modification 1: this is simpler and does not seem to be worse.
        c = a - a0/a1;
        if (a2 != 0)
          c = a - a0/a1;
          for i = 1:itype
            pc = a0 + (a1 + a2*(c - b))*(c - a);
            pdc = a1 + a2*(2*c - a - b);
            if (pdc == 0)
              c = a - a0/a1;
              break;
            endif
            c -= pc/pdc;
          endfor
        endif
      endif
      itype += 1;
    case 4
      ## Double secant step.
      c = u - 2*(b - a)/(fb - fa)*fu;
      ## Bisect if too far.
      if (abs (c - u) > 0.5*(b - a))
        c = 0.5 * (b + a);
      endif
      itype = 5;
    case 5
      ## Bisection step.
      c = 0.5 * (b + a);
      itype = 2;
    endswitch

    ## Don't let c come too close to a or b.
    delta = 2*0.7*(2 * abs (u) * eps + tolx);
    if ((b - a) <= 2*delta)
      c = (a + b)/2;
    else
      c = max (a + delta, min (b - delta, c));
    endif

    ## Calculate new point.
    x = c;
    fval = fc = fun (c);
    niter ++; nfev ++;

    ## Modification 2: skip inverse cubic interpolation if
    ## nonmonotonicity is detected.
    if (sign (fc - fa) * sign (fc - fb) >= 0)
      ## The new point broke monotonicity.
      ## Disable inverse cubic.
      fe = fc;
    else
      e = d; fe = fd;
    endif

    ## Bracketing.
    if (sign (fa) * sign (fc) < 0)
      d = b; fd = fb;
      b = c; fb = fc;
    elseif (sign (fb) * sign (fc) < 0)
      d = a; fd = fa;
      a = c; fa = fc;
    elseif (fc == 0)
      a = b = c; fa = fb = fc;
      info = 1;
      break;
    else
      ## This should never happen.
      error ("fzero:bracket", "fzero: zero point is not bracketed");
    endif

    ## If there's an output function, use it now.
    if (outfcn)
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      if (outfcn (x, optv, "iter"))
        info = -1;
        break;
      endif
    endif

    if (abs (fa) < abs (fb))
      u = a; fu = fa;
    else
      u = b; fu = fb;
    endif
    if (b - a <= 2*(2 * abs (u) * eps + tolx))
      info = 1;
      break;
    endif

    ## Skip bisection step if successful reduction.
    if (itype == 5 && (b - a) <= mba)
      itype = 2;
    endif
    if (itype == 2)
      mba = mu * (b - a);
    endif
  endwhile

  ## Check solution for a singularity by examining slope
  if (info == 1)
    if ((b - a) != 0 && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(eps+tolx)))
      info = -5;
    endif
  endif

  output.iterations = niter;
  output.funcCount = nfev;
  output.bracketx = [a, b];
  output.brackety = [fa, fb];

endfunction

## An assistant function that evaluates a function handle and checks for
## bad results.
function fx = guarded_eval (fun, x)
  fx = fun (x);
  fx = fx(1);
  if (! isreal (fx))
    error ("fzero:notreal", "fzero: non-real value encountered");
  elseif (isnan (fx))
    error ("fzero:isnan", "fzero: NaN value encountered");
  endif
endfunction

%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fzero (@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert (fzero (@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)