Mercurial > hg > octave-nkf
view scripts/polynomial/mpoles.m @ 15063:36cbcc37fdb8
Refactor configure.ac to make it more understandable.
Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
* configure.ac, m4/acinclude.m4: Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 31 Jul 2012 10:28:51 -0700 |
parents | f3d52523cde1 |
children | d63878346099 |
line wrap: on
line source
## Copyright (C) 2007-2012 Ben Abbott ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}) ## @deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}) ## @deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}, @var{reorder}) ## Identify unique poles in @var{p} and their associated multiplicity. The ## output is ordered from largest pole to smallest pole. ## ## If the relative difference of two poles is less than @var{tol} then ## they are considered to be multiples. The default value for @var{tol} ## is 0.001. ## ## If the optional parameter @var{reorder} is zero, poles are not sorted. ## ## The output @var{multp} is a vector specifying the multiplicity of the ## poles. @code{@var{multp}(n)} refers to the multiplicity of the Nth pole ## @code{@var{p}(@var{idxp}(n))}. ## ## For example: ## ## @example ## @group ## p = [2 3 1 1 2]; ## [m, n] = mpoles (p) ## @result{} m = [1; 1; 2; 1; 2] ## @result{} n = [2; 5; 1; 4; 3] ## @result{} p(n) = [3, 2, 2, 1, 1] ## @end group ## @end example ## ## @seealso{residue, poly, roots, conv, deconv} ## @end deftypefn ## Author: Ben Abbott <bpabbott@mac.com> ## Created: Sept 30, 2007 function [multp, indx] = mpoles (p, tol, reorder) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin < 2 || isempty (tol)) tol = 0.001; endif if (nargin < 3 || isempty (reorder)) reorder = true; endif Np = numel (p); ## Force the poles to be a column vector. p = p(:); ## Sort the poles according to their magnitidues, largest first. if (reorder) ## Sort with smallest magnitude first. [p, ordr] = sort (p); ## Reverse order, largest maginitude first. n = Np:-1:1; p = p(n); ordr = ordr(n); else ordr = 1:Np; endif ## Find pole multiplicty by comparing the relative differnce in the ## poles. multp = zeros (Np, 1); indx = []; n = find (multp == 0, 1); while (n) dp = abs (p-p(n)); if (p(n) == 0.0) if (any (abs (p) > 0 & isfinite (p))) p0 = mean (abs (p(abs (p) > 0 & isfinite (p)))); else p0 = 1; endif else p0 = abs (p(n)); endif k = find (dp < tol * p0); ## Poles can only be members of one multiplicity group. if (numel (indx)) k = k(! ismember (k, indx)); endif m = 1:numel (k); multp(k) = m; indx = [indx; k]; n = find (multp == 0, 1); endwhile multp = multp(indx); indx = ordr(indx); endfunction %!test %! [mp, n] = mpoles ([0 0], 0.01); %! assert (mp, [1; 2]);