Mercurial > hg > octave-nkf
view scripts/strings/mat2str.m @ 15063:36cbcc37fdb8
Refactor configure.ac to make it more understandable.
Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
* configure.ac, m4/acinclude.m4: Use common syntax for messages in config.h
Correct typos, refer to libraries in all caps, use two spaces after period.
Follow Autoconf guidelines and place general tests before specific tests.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 31 Jul 2012 10:28:51 -0700 |
parents | 5d3a684236b0 |
children | 333243133364 |
line wrap: on
line source
## Copyright (C) 2002-2012 Rolf Fabian ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} mat2str (@var{x}, @var{n}) ## @deftypefnx {Function File} {@var{s} =} mat2str (@var{x}, @var{n}, "class") ## Format real, complex, and logical matrices as strings. The ## returned string may be used to reconstruct the original matrix by using ## the @code{eval} function. ## ## The precision of the values is given by @var{n}. If @var{n} is a ## scalar then both real and imaginary parts of the matrix are printed ## to the same precision. Otherwise @code{@var{n}(1)} defines the ## precision of the real part and @code{@var{n}(2)} defines the ## precision of the imaginary part. The default for @var{n} is 15. ## ## If the argument "class" is given then the class of @var{x} is ## included in the string in such a way that @code{eval} will result in the ## construction of a matrix of the same class. ## ## @example ## @group ## mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2]) ## @result{} "[-0.3333+0.14i;0.3333-0.14i]" ## ## mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2]) ## @result{} "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]" ## ## mat2str (int16 ([1 -1]), "class") ## @result{} "int16([1 -1])" ## ## mat2str (logical (eye (2))) ## @result{} "[true false;false true]" ## ## isequal (x, eval (mat2str (x))) ## @result{} 1 ## @end group ## @end example ## ## @seealso{sprintf, num2str, int2str} ## @end deftypefn ## Author: Rolf Fabian <fabian@tu-cottbus.de> function s = mat2str (x, n = 15, cls = "") if (nargin < 1 || nargin > 3 || ! (isnumeric (x) || islogical (x))) print_usage (); elseif (ndims (x) > 2) error ("mat2str: X must be two dimensional"); endif if (nargin == 2 && ischar (n)) cls = n; n = 15; elseif (isempty (n)) n = 15; # Default precision endif x_islogical = islogical (x); x_iscomplex = iscomplex (x); if (x_iscomplex) if (isscalar (n)) n = [n, n]; endif fmt = sprintf ("%%.%dg%%+.%dgi", n(1), n(2)); elseif (x_islogical) v = {"false", "true"}; fmt = "%s"; else fmt = sprintf ("%%.%dg", n(1)); endif nel = numel (x); if (nel == 0) ## Empty, only print brackets s = "[]"; elseif (nel == 1) ## Scalar X, don't print brackets if (x_iscomplex) s = sprintf (fmt, real (x), imag (x)); elseif (x_islogical) s = v{x+1}; else s = sprintf (fmt, x); endif else ## Non-scalar X, print brackets fmt = cstrcat (fmt, " "); if (x_iscomplex) t = x.'; s = sprintf (fmt, [real(t(:))'; imag(t(:))']); elseif (x_islogical) t = v(x+1); s = cstrcat (sprintf (fmt, t{:})); else s = sprintf (fmt, x.'); endif s = cstrcat ("[", s); s(end) = "]"; idx = strfind (s, " "); nc = columns (x); s(idx(nc:nc:end)) = ";"; endif if (strcmp ("class", cls)) s = cstrcat (class (x), "(", s, ")"); endif endfunction %!assert (mat2str (0.7), "0.7") %!assert (mat2str (pi), "3.14159265358979") %!assert (mat2str (pi, 5), "3.1416") %!assert (mat2str (single (pi), 5, "class"), "single(3.1416)") %!assert (mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2]), "[-0.3333+0.14i;0.3333-0.14i]") %!assert (mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2]), "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]") %!assert (mat2str (int16 ([1 -1]), "class"), "int16([1 -1])") %!assert (mat2str (true), "true") %!assert (mat2str (false), "false") %!assert (mat2str (logical (eye (2))), "[true false;false true]") %% Test input validation %!error mat2str () %!error mat2str (1,2,3,4) %!error mat2str (["Hello"]) %!error <X must be two dimensional> mat2str (ones (3,3,2))