Mercurial > hg > octave-nkf
view liboctave/oct-inttypes.h @ 14026:3781981be535 ss-3-5-90
snapshot 3.5.90
* configure.ac (AC_INIT): Version is now 3.5.90.
(OCTAVE_API_VERSION_NUMBER): Now 46.
(OCTAVE_RELEASE_DATE): Now 2011-12-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 11 Dec 2011 23:18:31 -0500 |
parents | 28ddb3150943 |
children | 72c96de7a403 |
line wrap: on
line source
/* Copyright (C) 2004-2011 John W. Eaton Copyright (C) 2008-2009 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_inttypes_h) #define octave_inttypes_h 1 #include <climits> #include <cstdlib> #include <limits> #include <iosfwd> #include "lo-traits.h" #include "lo-math.h" #include "lo-mappers.h" #ifdef OCTAVE_INT_USE_LONG_DOUBLE inline long double xround (long double x) { return roundl (x); } inline long double xisnan (long double x) { return xisnan (static_cast<double> (x)); } #endif // FIXME -- we define this by our own because some compilers, such as // MSVC, do not provide std::abs (int64_t) and std::abs (uint64_t). In // the future, it should go away in favor of std::abs. template <class T> inline T octave_int_abs (T x) { return x >= 0 ? x : -x; } // Query for an integer type of certain sizeof, and signedness. template<int qsize, bool qsigned> struct query_integer_type { public: static const bool registered = false; typedef void type; // Void shall result in a compile-time error if we // attempt to use it in computations. }; #define REGISTER_INT_TYPE(TYPE) \ template <> \ class query_integer_type<sizeof (TYPE), std::numeric_limits<TYPE>::is_signed> \ { \ public: \ static const bool registered = true; \ typedef TYPE type; \ } // No two registered integers can share sizeof and signedness. REGISTER_INT_TYPE (int8_t); REGISTER_INT_TYPE (uint8_t); REGISTER_INT_TYPE (int16_t); REGISTER_INT_TYPE (uint16_t); REGISTER_INT_TYPE (int32_t); REGISTER_INT_TYPE (uint32_t); REGISTER_INT_TYPE (int64_t); REGISTER_INT_TYPE (uint64_t); // Rationale: Comparators have a single static method, rel(), that returns the // result of the binary relation. They also have two static boolean fields: // ltval, gtval determine the value of x OP y if x < y, x > y, respectively. #define REGISTER_OCTAVE_CMP_OP(NM,OP) \ class NM \ { \ public: \ static const bool ltval = (0 OP 1), gtval = (1 OP 0); \ template <class T> \ static bool op (T x, T y) { return x OP y; } \ } // We also provide two special relations: ct, yielding always true, and cf, // yielding always false. #define REGISTER_OCTAVE_CONST_OP(NM,value) \ class NM \ { \ public: \ static const bool ltval = value, gtval = value; \ template <class T> \ static bool op (T, T) { return value; } \ } // Handles non-homogeneous integer comparisons. Avoids doing useless tests. class octave_int_cmp_op { // This determines a suitable promotion type for T1 when meeting T2 in a // binary relation. If promotion to int or T2 is safe, it is used. Otherwise, // the signedness of T1 is preserved and it is widened if T2 is wider. // Notice that if this is applied to both types, they must end up with equal // size. template <class T1, class T2> class prom { // Promote to int? static const bool pint = (sizeof (T1) < sizeof (int) && sizeof (T2) < sizeof (int)); static const bool t1sig = std::numeric_limits<T1>::is_signed; static const bool t2sig = std::numeric_limits<T2>::is_signed; static const bool psig = (pint || (sizeof (T2) > sizeof (T1) && t2sig) || t1sig); static const int psize = (pint ? sizeof (int) : (sizeof (T2) > sizeof (T1) ? sizeof (T2) : sizeof (T1))); public: typedef typename query_integer_type<psize, psig>::type type; }; // Implements comparisons between two types of equal size but // possibly different signedness. template<class xop, int size> class uiop { typedef typename query_integer_type<size, false>::type utype; typedef typename query_integer_type<size, true>::type stype; public: static bool op (utype x, utype y) { return xop::op (x, y); } static bool op (stype x, stype y) { return xop::op (x, y); } static bool op (stype x, utype y) { return (x < 0) ? xop::ltval : xop::op (static_cast<utype> (x), y); } static bool op (utype x, stype y) { return (y < 0) ? xop::gtval : xop::op (x, static_cast<utype> (y)); } }; public: REGISTER_OCTAVE_CMP_OP (lt, <); REGISTER_OCTAVE_CMP_OP (le, <=); REGISTER_OCTAVE_CMP_OP (gt, >); REGISTER_OCTAVE_CMP_OP (ge, >=); REGISTER_OCTAVE_CMP_OP (eq, ==); REGISTER_OCTAVE_CMP_OP (ne, !=); REGISTER_OCTAVE_CONST_OP (ct, true); REGISTER_OCTAVE_CONST_OP (cf, false); // Universal comparison operation. template<class xop, class T1, class T2> static bool op (T1 x, T2 y) { typedef typename prom<T1, T2>::type PT1; typedef typename prom<T2, T1>::type PT2; return uiop<xop, sizeof (PT1)>::op (static_cast<PT1> (x), static_cast<PT2> (y)); } public: // Mixed comparisons template <class xop, class T> static bool mop (T x, double y) { return xop::op (static_cast<double> (x), y); } template <class xop, class T> static bool mop (double x, T y) { return xop::op (x, static_cast<double> (y)); } // Typecasting to doubles won't work properly for 64-bit integers - they lose precision. // If we have long doubles, use them... #ifdef OCTAVE_INT_USE_LONG_DOUBLE #define DEFINE_LONG_DOUBLE_CMP_OP(T1, T2) \ template <class xop> \ static bool \ mop (T1 x, T2 y) \ { \ return xop::op (static_cast<long double> (x), \ static_cast<long double> (y)); \ } #else // ... otherwise, use external handlers // FIXME: We could declare directly the mop methods as external, // but we can't do this because bugs in gcc (<= 4.3) prevent // explicit instantiations later in that case. #define DEFINE_LONG_DOUBLE_CMP_OP(T1, T2) \ template <class xop> static OCTAVE_API bool \ emulate_mop (T1, T2); \ template <class xop> \ static bool \ mop (T1 x, T2 y) \ { \ return emulate_mop<xop> (x, y); \ } #endif DEFINE_LONG_DOUBLE_CMP_OP(double, uint64_t) DEFINE_LONG_DOUBLE_CMP_OP(double, int64_t) DEFINE_LONG_DOUBLE_CMP_OP(int64_t, double) DEFINE_LONG_DOUBLE_CMP_OP(uint64_t, double) #undef DEFINE_LONG_DOUBLE_CMP_OP }; // Base integer class. No data, just conversion methods and exception flags. template <class T> class octave_int_base { protected: static T min_val () { return std::numeric_limits<T>:: min (); } static T max_val () { return std::numeric_limits<T>:: max (); } public: // Convert integer value. template <class S> static T truncate_int (const S& value) { // An exhaustive test whether the max and/or min check can be omitted. static const bool t_is_signed = std::numeric_limits<T>::is_signed; static const bool s_is_signed = std::numeric_limits<S>::is_signed; static const int t_size = sizeof (T), s_size = sizeof (S); static const bool omit_chk_min = (! s_is_signed || (t_is_signed && t_size >= s_size)); static const bool omit_chk_max = (t_size > s_size || (t_size == s_size && (! t_is_signed || s_is_signed))); // If the check can be omitted, substitute constant false relation. typedef octave_int_cmp_op::cf cf; typedef octave_int_cmp_op::lt lt; typedef octave_int_cmp_op::gt gt; typedef typename if_then_else<omit_chk_min, cf, lt>::result chk_min; typedef typename if_then_else<omit_chk_max, cf, gt>::result chk_max; // Efficiency of the following depends on inlining and dead code // elimination, but that should be a piece of cake for most compilers. if (chk_min::op (value, static_cast<S> (min_val ()))) { return min_val (); } else if (chk_max::op (value, static_cast<S> (max_val ()))) { return max_val (); } else return static_cast<T> (value); } private: // Computes a real-valued threshold for a max/min check. template <class S> static S compute_threshold (S val, T orig_val) { val = xround (val); // Fool optimizations (maybe redundant) // If val is even, but orig_val is odd, we're one unit off. if (orig_val % 2 && val / 2 == xround (val / 2)) // FIXME -- is this always correct? val *= (static_cast<S>(1) - (std::numeric_limits<S>::epsilon () / 2)); return val; } public: // Convert a real number (check NaN and non-int). template <class S> static T convert_real (const S& value) { // Compute proper thresholds. static const S thmin = compute_threshold (static_cast<S> (min_val ()), min_val ()); static const S thmax = compute_threshold (static_cast<S> (max_val ()), max_val ()); if (xisnan (value)) { return static_cast<T> (0); } else if (value < thmin) { return min_val (); } else if (value > thmax) { return max_val (); } else { S rvalue = xround (value); return static_cast<T> (rvalue); } } }; // Saturated (homogeneous) integer arithmetics. The signed and unsigned // implementations are significantly different, so we implement another layer // and completely specialize. Arithmetics inherits from octave_int_base so that // it can use its exceptions and truncation functions. template <class T, bool is_signed> class octave_int_arith_base { }; // Unsigned arithmetics. C++ standard requires it to be modular, so the // overflows can be handled efficiently and reliably. template <class T> class octave_int_arith_base<T, false> : octave_int_base<T> { public: static T abs (T x) { return x; } static T signum (T x) { return x ? static_cast<T> (1) : static_cast<T> (0); } // Shifts do not overflow. static T rshift (T x, int n) { return x >> n; } static T lshift (T x, int n) { return x << n; } static T minus (T) { return static_cast<T> (0); } // the overflow behaviour for unsigned integers is guaranteed by C/C++, // so the following should always work. static T add (T x, T y) { T u = x + y; if (u < x) { u = octave_int_base<T>::max_val (); } return u; } static T sub (T x, T y) { T u = x - y; if (u > x) { u = 0; } return u; } // Multiplication is done using promotion to wider integer type. If there is // no suitable promotion type, this operation *MUST* be specialized. static T mul (T x, T y) { // Promotion type for multiplication (if exists). typedef typename query_integer_type<2*sizeof (T), false>::type mptype; return truncate_int (static_cast<mptype> (x) * static_cast<mptype> (y)); } // Division with rounding to nearest. Note that / and % are probably // computed by a single instruction. static T div (T x, T y) { if (y != 0) { T z = x / y, w = x % y; if (w >= y-w) z += 1; return z; } else { return x ? octave_int_base<T>::max_val () : 0; } } // Remainder. static T rem (T x, T y) { return y != 0 ? x % y : 0; } // Modulus. Note the weird y = 0 case for Matlab compatibility. static T mod (T x, T y) { return y != 0 ? x % y : x; } }; #ifdef OCTAVE_INT_USE_LONG_DOUBLE // Handle 64-bit multiply using long double template <> inline uint64_t octave_int_arith_base<uint64_t, false>:: mul (uint64_t x, uint64_t y) { long double p = static_cast<long double> (x) * static_cast<long double> (y); if (p > static_cast<long double> (octave_int_base<uint64_t>::max_val ())) { return octave_int_base<uint64_t>::max_val (); } else return static_cast<uint64_t> (p); } #else // Special handler for 64-bit integer multiply. template <> OCTAVE_API uint64_t octave_int_arith_base<uint64_t, false>::mul (uint64_t, uint64_t); #endif // Signed integer arithmetics. // Rationale: If HAVE_FAST_INT_OPS is defined, the following conditions // should hold: // 1. Signed numbers are represented by twos complement // (see <http://en.wikipedia.org/wiki/Two%27s_complement>) // 2. static_cast to unsigned int counterpart works like interpreting // the signed bit pattern as unsigned (and is thus zero-cost). // 3. Signed addition and subtraction yield the same bit results as unsigned. // (We use casts to prevent optimization interference, so there is no // need for things like -ftrapv). // 4. Bit operations on signed integers work like on unsigned integers, // except for the shifts. Shifts are arithmetic. // // The above conditions are satisfied by most modern platforms. If // HAVE_FAST_INT_OPS is defined, bit tricks and wraparound arithmetics are used // to avoid conditional jumps as much as possible, thus being friendly to modern // pipeline processor architectures. // Otherwise, we fall back to a bullet-proof code that only uses assumptions // guaranteed by the standard. template <class T> class octave_int_arith_base<T, true> : octave_int_base<T> { // The corresponding unsigned type. typedef typename query_integer_type<sizeof (T), false>::type UT; public: // Returns 1 for negative number, 0 otherwise. static T __signbit (T x) { #ifdef HAVE_FAST_INT_OPS return static_cast<UT> (x) >> std::numeric_limits<T>::digits; #else return (x < 0) ? 1 : 0; #endif } static T abs (T x) { #ifdef HAVE_FAST_INT_OPS // This is close to how GCC does std::abs, but we can't just use std::abs, // because its behaviour for INT_MIN is undefined and the compiler could // discard the following test. T m = x >> std::numeric_limits<T>::digits; T y = (x ^ m) - m; if (y < 0) { y = octave_int_base<T>::max_val (); } return y; #else // -INT_MAX is safe because C++ actually allows only three implementations // of integers: sign & magnitude, ones complement and twos complement. // The first test will, with modest optimizations, evaluate at compile // time, and maybe eliminate the branch completely. T y; if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val () && x == octave_int_base<T>::min_val ()) { y = octave_int_base<T>::max_val (); } else y = (x < 0) ? -x : x; return y; #endif } static T signum (T x) { // With modest optimizations, this will compile without a jump. return ((x > 0) ? 1 : 0) - __signbit (x); } // FIXME -- we do not have an authority what signed shifts should // exactly do, so we define them the easy way. Note that Matlab does // not define signed shifts. static T rshift (T x, int n) { return x >> n; } static T lshift (T x, int n) { return x << n; } // Minus has problems similar to abs. static T minus (T x) { #ifdef HAVE_FAST_INT_OPS T y = -x; if (y == octave_int_base<T>::min_val ()) { --y; } return y; #else T y; if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val () && x == octave_int_base<T>::min_val ()) { y = octave_int_base<T>::max_val (); } else y = -x; return y; #endif } static T add (T x, T y) { #ifdef HAVE_FAST_INT_OPS // The typecasts do nothing, but they are here to prevent an optimizing // compiler from interfering. Also, the signed operations on small types // actually return int. T u = static_cast<UT> (x) + static_cast<UT> (y); T ux = u ^ x, uy = u ^ y; if ((ux & uy) < 0) { u = octave_int_base<T>::max_val () + __signbit (~u); } return u; #else // We shall carefully avoid anything that may overflow. T u; if (y < 0) { if (x < octave_int_base<T>::min_val () - y) { u = octave_int_base<T>::min_val (); } else u = x + y; } else { if (x > octave_int_base<T>::max_val () - y) { u = octave_int_base<T>::max_val (); } else u = x + y; } return u; #endif } // This is very similar to addition. static T sub (T x, T y) { #ifdef HAVE_FAST_INT_OPS // The typecasts do nothing, but they are here to prevent an optimizing // compiler from interfering. Also, the signed operations on small types // actually return int. T u = static_cast<UT> (x) - static_cast<UT> (y); T ux = u ^ x, uy = u ^ ~y; if ((ux & uy) < 0) { u = octave_int_base<T>::max_val () + __signbit (~u); } return u; #else // We shall carefully avoid anything that may overflow. T u; if (y < 0) { if (x > octave_int_base<T>::max_val () + y) { u = octave_int_base<T>::max_val (); } else u = x - y; } else { if (x < octave_int_base<T>::min_val () + y) { u = octave_int_base<T>::min_val (); } else u = x - y; } return u; #endif } // Multiplication is done using promotion to wider integer type. If there is // no suitable promotion type, this operation *MUST* be specialized. static T mul (T x, T y) { // Promotion type for multiplication (if exists). typedef typename query_integer_type<2*sizeof (T), true>::type mptype; return truncate_int (static_cast<mptype> (x) * static_cast<mptype> (y)); } // Division. static T div (T x, T y) { T z; if (y == 0) { if (x < 0) z = octave_int_base<T>::min_val (); else if (x != 0) z = octave_int_base<T>::max_val (); else z = 0; } else if (y < 0) { // This is a special case that overflows as well. if (y == -1 && x == octave_int_base<T>::min_val ()) { z = octave_int_base<T>::max_val (); } else { z = x / y; T w = -octave_int_abs (x % y); // Can't overflow, but std::abs (x) can! if (w <= y - w) z -= 1 - (__signbit (x) << 1); } } else { z = x / y; // FIXME -- this is a workaround due to MSVC's absence of // std::abs (int64_t). The call to octave_int_abs can't // overflow, but std::abs (x) can! T w = octave_int_abs (x % y); if (w >= y - w) z += 1 - (__signbit (x) << 1); } return z; } // Remainder. static T rem (T x, T y) { return y != 0 ? x % y : 0; } // Modulus. Note the weird y = 0 case for Matlab compatibility. static T mod (T x, T y) { if (y != 0) { T r = x % y; return ((r < 0) != (y < 0)) ? r + y : r; } else return x; } }; #ifdef OCTAVE_INT_USE_LONG_DOUBLE // Handle 64-bit multiply using long double template <> inline int64_t octave_int_arith_base<int64_t, true>:: mul (int64_t x, int64_t y) { long double p = static_cast<long double> (x) * static_cast<long double> (y); // NOTE: We could maybe do it with a single branch if HAVE_FAST_INT_OPS, but it // would require one more runtime conversion, so the question is whether it would // really be faster. if (p > static_cast<long double> (octave_int_base<int64_t>::max_val ())) { return octave_int_base<int64_t>::max_val (); } else if (p < static_cast<long double> (octave_int_base<int64_t>::min_val ())) { return octave_int_base<int64_t>::min_val (); } else return static_cast<int64_t> (p); } #else // Special handler for 64-bit integer multiply. template <> OCTAVE_API int64_t octave_int_arith_base<int64_t, true>::mul (int64_t, int64_t); #endif // This class simply selects the proper arithmetics. template<class T> class octave_int_arith : public octave_int_arith_base<T, std::numeric_limits<T>::is_signed> {}; template <class T> class octave_int : public octave_int_base<T> { public: typedef T val_type; octave_int (void) : ival () { } octave_int (T i) : ival (i) { } octave_int (double d) : ival (octave_int_base<T>::convert_real (d)) { } octave_int (float d) : ival (octave_int_base<T>::convert_real (d)) { } #ifdef OCTAVE_INT_USE_LONG_DOUBLE octave_int (long double d) : ival (octave_int_base<T>::convert_real (d)) { } #endif octave_int (bool b) : ival (b) { } template <class U> octave_int (const U& i) : ival(octave_int_base<T>::truncate_int (i)) { } template <class U> octave_int (const octave_int<U>& i) : ival (octave_int_base<T>::truncate_int (i.value ())) { } octave_int (const octave_int<T>& i) : ival (i.ival) { } octave_int& operator = (const octave_int<T>& i) { ival = i.ival; return *this; } T value (void) const { return ival; } const unsigned char * iptr (void) const { return reinterpret_cast<const unsigned char *> (& ival); } bool operator ! (void) const { return ! ival; } bool bool_value (void) const { return static_cast<bool> (value ()); } char char_value (void) const { return static_cast<char> (value ()); } double double_value (void) const { return static_cast<double> (value ()); } float float_value (void) const { return static_cast<float> (value ()); } operator T (void) const { return value (); } // char and bool operators intentionally omitted. operator double (void) const { return double_value (); } operator float (void) const { return float_value (); } octave_int<T> operator + () const { return *this; } // unary operators & mappers #define OCTAVE_INT_UN_OP(OPNAME,NAME) \ inline octave_int<T> \ OPNAME () const \ { return octave_int_arith<T>::NAME (ival); } OCTAVE_INT_UN_OP(operator -, minus) OCTAVE_INT_UN_OP(abs, abs) OCTAVE_INT_UN_OP(signum, signum) #undef OCTAVE_INT_UN_OP // Homogeneous binary integer operations. #define OCTAVE_INT_BIN_OP(OP, NAME, ARGT) \ inline octave_int<T> \ operator OP (const ARGT& y) const \ { return octave_int_arith<T>::NAME (ival, y); } \ inline octave_int<T>& \ operator OP##= (const ARGT& y) \ { \ ival = octave_int_arith<T>::NAME (ival, y); \ return *this; \ } OCTAVE_INT_BIN_OP(+, add, octave_int<T>) OCTAVE_INT_BIN_OP(-, sub, octave_int<T>) OCTAVE_INT_BIN_OP(*, mul, octave_int<T>) OCTAVE_INT_BIN_OP(/, div, octave_int<T>) OCTAVE_INT_BIN_OP(%, rem, octave_int<T>) OCTAVE_INT_BIN_OP(<<, lshift, int) OCTAVE_INT_BIN_OP(>>, rshift, int) #undef OCTAVE_INT_BIN_OP static octave_int<T> min (void) { return std::numeric_limits<T>::min (); } static octave_int<T> max (void) { return std::numeric_limits<T>::max (); } static int nbits (void) { return std::numeric_limits<T>::digits; } static int byte_size (void) { return sizeof(T); } static const char *type_name (); // The following are provided for convenience. static const octave_int zero, one; // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return const_cast<T *> (&ival); } private: T ival; }; template <class T> inline octave_int<T> rem (const octave_int<T>& x, const octave_int<T>& y) { return octave_int_arith<T>::rem (x.value (), y.value ()); } template <class T> inline octave_int<T> mod (const octave_int<T>& x, const octave_int<T>& y) { return octave_int_arith<T>::mod (x.value (), y.value ()); } // No mixed integer binary operations! template <class T> inline bool xisnan (const octave_int<T>&) { return false; } // FIXME -- can/should any of these be inline? template <class T> extern OCTAVE_API octave_int<T> pow (const octave_int<T>&, const octave_int<T>&); template <class T> extern OCTAVE_API octave_int<T> pow (const double& a, const octave_int<T>& b); template <class T> extern OCTAVE_API octave_int<T> pow (const octave_int<T>& a, const double& b); template <class T> extern OCTAVE_API octave_int<T> pow (const float& a, const octave_int<T>& b); template <class T> extern OCTAVE_API octave_int<T> pow (const octave_int<T>& a, const float& b); // FIXME: Do we really need a differently named single-precision // function integer power function here instead of an overloaded // one? template <class T> extern OCTAVE_API octave_int<T> powf (const float& a, const octave_int<T>& b); template <class T> extern OCTAVE_API octave_int<T> powf (const octave_int<T>& a, const float& b); // Binary relations #define OCTAVE_INT_CMP_OP(OP, NAME) \ template<class T1, class T2> \ inline bool \ operator OP (const octave_int<T1>& x, const octave_int<T2>& y) \ { return octave_int_cmp_op::op<octave_int_cmp_op::NAME, T1, T2> \ (x.value (), y.value ()); } OCTAVE_INT_CMP_OP (<, lt) OCTAVE_INT_CMP_OP (<=, le) OCTAVE_INT_CMP_OP (>, gt) OCTAVE_INT_CMP_OP (>=, ge) OCTAVE_INT_CMP_OP (==, eq) OCTAVE_INT_CMP_OP (!=, ne) #undef OCTAVE_INT_CMP_OP template <class T> inline std::ostream& operator << (std::ostream& os, const octave_int<T>& ival) { os << ival.value (); return os; } template <class T> inline std::istream& operator >> (std::istream& is, octave_int<T>& ival) { T tmp = 0; is >> tmp; ival = tmp; return is; } // Bitwise operations #define OCTAVE_INT_BITCMP_OP(OP) \ template <class T> \ octave_int<T> \ operator OP (const octave_int<T>& x, const octave_int<T>& y) \ { return x.value () OP y.value (); } OCTAVE_INT_BITCMP_OP (&) OCTAVE_INT_BITCMP_OP (|) OCTAVE_INT_BITCMP_OP (^) #undef OCTAVE_INT_BITCMP_OP // General bit shift. template <class T> octave_int<T> bitshift (const octave_int<T>& a, int n, const octave_int<T>& mask = std::numeric_limits<T>::max ()) { if (n > 0) return (a << n) & mask; else if (n < 0) return (a >> -n) & mask; else return a & mask; } typedef octave_int<int8_t> octave_int8; typedef octave_int<int16_t> octave_int16; typedef octave_int<int32_t> octave_int32; typedef octave_int<int64_t> octave_int64; typedef octave_int<uint8_t> octave_uint8; typedef octave_int<uint16_t> octave_uint16; typedef octave_int<uint32_t> octave_uint32; typedef octave_int<uint64_t> octave_uint64; #define OCTAVE_INT_DOUBLE_BIN_OP0(OP) \ template <class T> \ inline octave_int<T> \ operator OP (const octave_int<T>& x, const double& y) \ { return octave_int<T> (static_cast<double> (x) OP y); } \ template <class T> \ inline octave_int<T> \ operator OP (const double& x, const octave_int<T>& y) \ { return octave_int<T> (x OP static_cast<double> (y)); } \ #ifdef OCTAVE_INT_USE_LONG_DOUBLE // Handle mixed op using long double #define OCTAVE_INT_DOUBLE_BIN_OP(OP) \ OCTAVE_INT_DOUBLE_BIN_OP0(OP) \ template <> \ inline octave_int64 \ operator OP (const double& x, const octave_int64& y) \ { return octave_int64 (x OP static_cast<long double> (y.value ())); } \ template <> \ inline octave_uint64 \ operator OP (const double& x, const octave_uint64& y) \ { return octave_uint64 (x OP static_cast<long double> (y.value ())); } \ template <> \ inline octave_int64 \ operator OP (const octave_int64& x, const double& y) \ { return octave_int64 (static_cast<long double> (x.value ()) OP y); } \ template <> \ inline octave_uint64 \ operator OP (const octave_uint64& x, const double& y) \ { return octave_uint64 (static_cast<long double> (x.value ()) OP y); } #else // external handlers #define OCTAVE_INT_DOUBLE_BIN_OP(OP) \ OCTAVE_INT_DOUBLE_BIN_OP0(OP) \ template <> \ OCTAVE_API octave_int64 \ operator OP (const double&, const octave_int64&); \ template <> \ OCTAVE_API octave_uint64 \ operator OP (const double&, const octave_uint64&); \ template <> \ OCTAVE_API octave_int64 \ operator OP (const octave_int64&, const double&); \ template <> \ OCTAVE_API octave_uint64 \ operator OP (const octave_uint64&, const double&); #endif OCTAVE_INT_DOUBLE_BIN_OP (+) OCTAVE_INT_DOUBLE_BIN_OP (-) OCTAVE_INT_DOUBLE_BIN_OP (*) OCTAVE_INT_DOUBLE_BIN_OP (/) #undef OCTAVE_INT_DOUBLE_BIN_OP0 #undef OCTAVE_INT_DOUBLE_BIN_OP #define OCTAVE_INT_DOUBLE_CMP_OP(OP,NAME) \ template <class T> \ inline bool \ operator OP (const octave_int<T>& x, const double& y) \ { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x.value (), y); } \ template <class T> \ inline bool \ operator OP (const double& x, const octave_int<T>& y) \ { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x, y.value ()); } OCTAVE_INT_DOUBLE_CMP_OP (<, lt) OCTAVE_INT_DOUBLE_CMP_OP (<=, le) OCTAVE_INT_DOUBLE_CMP_OP (>=, ge) OCTAVE_INT_DOUBLE_CMP_OP (>, gt) OCTAVE_INT_DOUBLE_CMP_OP (==, eq) OCTAVE_INT_DOUBLE_CMP_OP (!=, ne) #undef OCTAVE_INT_DOUBLE_CMP_OP // Floats are handled by simply converting to doubles. #define OCTAVE_INT_FLOAT_BIN_OP(OP) \ template <class T> \ inline octave_int<T> \ operator OP (const octave_int<T>& x, float y) \ { return x OP static_cast<double> (y); } \ template <class T> \ inline octave_int<T> \ operator OP (float x, const octave_int<T>& y) \ { return static_cast<double> (x) OP y; } OCTAVE_INT_FLOAT_BIN_OP (+) OCTAVE_INT_FLOAT_BIN_OP (-) OCTAVE_INT_FLOAT_BIN_OP (*) OCTAVE_INT_FLOAT_BIN_OP (/) #undef OCTAVE_INT_FLOAT_BIN_OP #define OCTAVE_INT_FLOAT_CMP_OP(OP) \ template <class T> \ inline bool \ operator OP (const octave_int<T>& x, const float& y) \ { return x OP static_cast<double> (y); } \ template <class T> \ bool \ operator OP (const float& x, const octave_int<T>& y) \ { return static_cast<double> (x) OP y; } OCTAVE_INT_FLOAT_CMP_OP (<) OCTAVE_INT_FLOAT_CMP_OP (<=) OCTAVE_INT_FLOAT_CMP_OP (>=) OCTAVE_INT_FLOAT_CMP_OP (>) OCTAVE_INT_FLOAT_CMP_OP (==) OCTAVE_INT_FLOAT_CMP_OP (!=) #undef OCTAVE_INT_FLOAT_CMP_OP template <class T> octave_int<T> xmax (const octave_int<T>& x, const octave_int<T>& y) { const T xv = x.value (), yv = y.value (); return octave_int<T> (xv >= yv ? xv : yv); } template <class T> octave_int<T> xmin (const octave_int<T>& x, const octave_int<T>& y) { const T xv = x.value (), yv = y.value (); return octave_int<T> (xv <= yv ? xv : yv); } #endif