Mercurial > hg > octave-nkf
view scripts/sparse/spaugment.m @ 14026:3781981be535 ss-3-5-90
snapshot 3.5.90
* configure.ac (AC_INIT): Version is now 3.5.90.
(OCTAVE_API_VERSION_NUMBER): Now 46.
(OCTAVE_RELEASE_DATE): Now 2011-12-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 11 Dec 2011 23:18:31 -0500 |
parents | d0b799dafede |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2008-2011 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} spaugment (@var{A}, @var{c}) ## Create the augmented matrix of @var{A}. This is given by ## ## @example ## @group ## [@var{c} * eye(@var{m}, @var{m}),@var{A}; @var{A}', zeros(@var{n}, ## @var{n})] ## @end group ## @end example ## ## @noindent ## This is related to the least squares solution of ## @code{@var{A} \\ @var{b}}, by ## ## @example ## @group ## @var{s} * [ @var{r} / @var{c}; x] = [@var{b}, zeros(@var{n}, ## columns(@var{b})] ## @end group ## @end example ## ## @noindent ## where @var{r} is the residual error ## ## @example ## @var{r} = @var{b} - @var{A} * @var{x} ## @end example ## ## As the matrix @var{s} is symmetric indefinite it can be factorized ## with @code{lu}, and the minimum norm solution can therefore be found ## without the need for a @code{qr} factorization. As the residual ## error will be @code{zeros (@var{m}, @var{m})} for under determined ## problems, and example can be ## ## @example ## @group ## m = 11; n = 10; mn = max(m ,n); ## A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)], ## [-1, 0, 1], m, n); ## x0 = A \ ones (m,1); ## s = spaugment (A); ## [L, U, P, Q] = lu (s); ## x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)]))); ## x1 = x1(end - n + 1 : end); ## @end group ## @end example ## ## To find the solution of an overdetermined problem needs an estimate ## of the residual error @var{r} and so it is more complex to formulate ## a minimum norm solution using the @code{spaugment} function. ## ## In general the left division operator is more stable and faster than ## using the @code{spaugment} function. ## @end deftypefn function s = spaugment (A, c) if (nargin < 2) if (issparse (A)) c = max (max (abs (A))) / 1000; else if (ndims (A) != 2) error ("spaugment: expecting 2-dimenisional matrix"); else c = max (abs (A(:))) / 1000; endif endif elseif (!isscalar (c)) error ("spaugment: C must be a scalar"); endif [m, n] = size (A); s = [ c * speye(m, m), A; A', sparse(n, n)]; endfunction %!testif HAVE_UMFPACK %! m = 11; n = 10; mn = max(m ,n); %! A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],[-1,0,1], m, n); %! x0 = A \ ones (m,1); %! s = spaugment (A); %! [L, U, P, Q] = lu (s); %! x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)]))); %! x1 = x1(end - n + 1 : end); %! assert (x1, x0, 1e-6)