Mercurial > hg > octave-nkf
view src/sparse.cc @ 14026:3781981be535 ss-3-5-90
snapshot 3.5.90
* configure.ac (AC_INIT): Version is now 3.5.90.
(OCTAVE_API_VERSION_NUMBER): Now 46.
(OCTAVE_RELEASE_DATE): Now 2011-12-11.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sun, 11 Dec 2011 23:18:31 -0500 |
parents | 7a5aacf65f81 |
children | 5b49cafe0599 |
line wrap: on
line source
/* Copyright (C) 2004-2011 David Bateman Copyright (C) 1998-2004 Andy Adler Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cstdlib> #include <string> #include "variables.h" #include "utils.h" #include "pager.h" #include "defun.h" #include "gripes.h" #include "quit.h" #include "unwind-prot.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-bool-sparse.h" DEFUN (issparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} issparse (@var{x})\n\ Return true if @var{x} is a sparse matrix.\n\ @seealso{ismatrix}\n\ @end deftypefn") { if (args.length() != 1) { print_usage (); return octave_value (); } else return octave_value (args(0).is_sparse_type ()); } DEFUN (sparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{s} =} sparse (@var{a})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv}, @var{m}, @var{n}, @var{nzmax})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv})\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{s}, @var{m}, @var{n}, \"unique\")\n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{m}, @var{n})\n\ Create a sparse matrix from the full matrix or row, column, value triplets.\n\ If @var{a} is a full matrix, convert it to a sparse matrix representation,\n\ removing all zero values in the process.\n\ \n\ Given the integer index vectors @var{i} and @var{j}, a 1-by-@code{nnz} vector\n\ of real of complex values @var{sv}, overall dimensions @var{m} and @var{n}\n\ of the sparse matrix. The argument @code{nzmax} is ignored but accepted for\n\ compatibility with @sc{matlab}. If @var{m} or @var{n} are not specified\n\ their values are derived from the maximum index in the vectors @var{i} and\n\ @var{j} as given by @code{@var{m} = max (@var{i})},\n\ @code{@var{n} = max (@var{j})}.\n\ \n\ @strong{Note}: if multiple values are specified with the same\n\ @var{i}, @var{j} indices, the corresponding values in @var{s} will\n\ be added.\n\ \n\ The following are all equivalent:\n\ \n\ @example\n\ @group\n\ s = sparse (i, j, s, m, n)\n\ s = sparse (i, j, s, m, n, \"summation\")\n\ s = sparse (i, j, s, m, n, \"sum\")\n\ @end group\n\ @end example\n\ \n\ Given the option \"unique\". if more than two values are specified for the\n\ same @var{i}, @var{j} indices, the last specified value will be used.\n\ \n\ @code{sparse(@var{m}, @var{n})} is equivalent to\n\ @code{sparse ([], [], [], @var{m}, @var{n}, 0)}\n\ \n\ If any of @var{sv}, @var{i} or @var{j} are scalars, they are expanded\n\ to have a common size.\n\ @seealso{full}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); // Temporarily disable sparse_auto_mutate if set (it's obsolete anyway). unwind_protect frame; frame.protect_var (Vsparse_auto_mutate); Vsparse_auto_mutate = false; if (nargin == 1) { octave_value arg = args (0); if (arg.is_bool_type ()) retval = arg.sparse_bool_matrix_value (); else if (arg.is_complex_type ()) retval = arg.sparse_complex_matrix_value (); else if (arg.is_numeric_type ()) retval = arg.sparse_matrix_value (); else gripe_wrong_type_arg ("sparse", arg); } else if (nargin == 2) { octave_idx_type m = 0, n = 0; if (args(0).is_scalar_type () && args(1).is_scalar_type ()) { m = args(0).idx_type_value (); n = args(1).idx_type_value (); } else error ("sparse: dimensions M,N must be scalar"); if (! error_state) { if (m >= 0 && n >= 0) retval = SparseMatrix (m, n); else error ("sparse: dimensions M,N must be positive or zero"); } } else if (nargin >= 3) { bool summation = true; if (nargin > 3 && args(nargin-1).is_string ()) { std::string opt = args(nargin-1).string_value (); if (opt == "unique") summation = false; else if (opt == "sum" || opt == "summation") summation = true; else error ("sparse: invalid option: %s", opt.c_str ()); nargin -= 1; } if (! error_state) { octave_idx_type m = -1, n = -1, nzmax = -1; if (nargin == 6) { nzmax = args(5).idx_type_value (); nargin --; } if (nargin == 5) { if (args(3).is_scalar_type () && args(4).is_scalar_type ()) { m = args(3).idx_type_value (); n = args(4).idx_type_value (); } else error ("sparse: expecting scalar dimensions"); if (! error_state && (m < 0 || n < 0)) error ("sparse: dimensions must be nonnegative"); } else if (nargin != 3) print_usage (); if (! error_state) { idx_vector i = args(0).index_vector (); idx_vector j = args(1).index_vector (); if (args(2).is_bool_type ()) retval = SparseBoolMatrix (args(2).bool_array_value (), i, j, m, n, summation, nzmax); else if (args(2).is_complex_type ()) retval = SparseComplexMatrix (args(2).complex_array_value (), i, j, m, n, summation, nzmax); else if (args(2).is_numeric_type ()) retval = SparseMatrix (args(2).array_value (), i, j, m, n, summation, nzmax); else gripe_wrong_type_arg ("sparse", args(2)); } } } return retval; } DEFUN (spalloc, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{s} =} spalloc (@var{m}, @var{n}, @var{nz})\n\ Create an @var{m}-by-@var{n} sparse matrix with pre-allocated space for at\n\ most @var{nz} nonzero elements. This is useful for building the matrix\n\ incrementally by a sequence of indexed assignments. Subsequent indexed\n\ assignments will reuse the pre-allocated memory, provided they are of one of\n\ the simple forms\n\ \n\ @itemize\n\ @item @code{@var{s}(I:J) = @var{x}}\n\ \n\ @item @code{@var{s}(:,I:J) = @var{x}}\n\ \n\ @item @code{@var{s}(K:L,I:J) = @var{x}}\n\ @end itemize\n\ \n\ @b{and} that the following conditions are met:\n\ \n\ @itemize\n\ @item the assignment does not decrease nnz(@var{S}).\n\ \n\ @item after the assignment, nnz(@var{S}) does not exceed @var{nz}.\n\ \n\ @item no index is out of bounds.\n\ @end itemize\n\ \n\ Partial movement of data may still occur, but in general the assignment will\n\ be more memory and time-efficient under these circumstances. In particular,\n\ it is possible to efficiently build a pre-allocated sparse matrix from\n\ contiguous block of columns.\n\ \n\ The amount of pre-allocated memory for a given matrix may be queried using\n\ the function @code{nzmax}.\n\ @seealso{nzmax, sparse}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 2 || nargin == 3) { octave_idx_type m = args(0).idx_type_value (); octave_idx_type n = args(1).idx_type_value (); octave_idx_type nz = 0; if (nargin == 3) nz = args(2).idx_type_value (); if (error_state) ; else if (m >= 0 && n >= 0 && nz >= 0) retval = SparseMatrix (dim_vector (m, n), nz); else error ("spalloc: M,N,NZ must be non-negative"); } else print_usage (); return retval; }