Mercurial > hg > octave-nkf
view scripts/control/system/is_stabilizable.m @ 7786:37ff0c21c17d
load-path.cc (load_path::initialize): include separator when appending sys_path
author | Kim Hansen |
---|---|
date | Tue, 20 May 2008 16:49:02 -0400 |
parents | aeeb646f6538 |
children | df9519e9990c 651401a1c39b |
line wrap: on
line source
## Copyright (C) 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 ## Kai P. Mueller. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{retval} =} is_stabilizable (@var{sys}, @var{tol}) ## @deftypefnx {Function File} {@var{retval} =} is_stabilizable (@var{a}, @var{b}, @var{tol}, @var{dflg}) ## Logical check for system stabilizability (i.e., all unstable modes are controllable). ## Returns 1 if the system is stabilizable, 0 if the system is not stabilizable, -1 ## if the system has non stabilizable modes at the imaginary axis (unit circle for ## discrete-time systems. ## ## Test for stabilizability is performed via Hautus Lemma. If ## @iftex ## @tex ## @var{dflg}$\neq$0 ## @end tex ## @end iftex ## @ifinfo ## @var{dflg}!=0 ## @end ifinfo ## assume that discrete-time matrices (a,b) are supplied. ## @seealso{size, rows, columns, length, ismatrix, isscalar, isvector ## is_observable, is_stabilizable, is_detectable} ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems function retval = is_stabilizable (a, b, tol, dflg) if (nargin < 1) print_usage (); elseif (isstruct (a)) ## system passed. if (nargin == 2) tol = b; % get tolerance elseif (nargin > 2) print_usage (); endif disc = is_digital(a); [a, b] = sys2ss (a); else ## a,b arguments sent directly. if (nargin > 4 || nargin == 1) print_usage (); endif if (exist ("dflg")) disc = dflg; else disc = 0; endif endif if (! exist ("tol")) tol = 200*eps; endif ## Checking dimensions n = is_square (a); if (n == 0) error ("is_stabilizable: a must be square"); endif [nr, m] = size (b); if (nr != n) error ("is_stabilizable: (a,b) not conformal"); endif ##Computing the eigenvalue of A L = eig (a); retval = 1; specflag = 0; for i = 1:n if (disc == 0) ## Continuous time case rL = real (L(i)); if (rL >= 0) H = [eye(n)*L(i)-a, b]; f = (rank (H, tol) == n); if (f == 0) retval = 0; if (rL == 0) specflag = 1; endif endif endif else ## Discrete time case rL = abs (L(i)); if (rL >= 1) H = [eye(n)*L(i)-a, b]; f = (rank (H, tol) == n); if (f == 0) retval = 0; if (rL == 1) specflag = 1; endif endif endif endif endfor if (specflag == 1) ## This means that the system has uncontrollable modes at the imaginary axis ## (or at the unit circle for discrete time systems) retval = -1; endif endfunction