Mercurial > hg > octave-nkf
view scripts/linear-algebra/dmult.m @ 7786:37ff0c21c17d
load-path.cc (load_path::initialize): include separator when appending sys_path
author | Kim Hansen |
---|---|
date | Tue, 20 May 2008 16:49:02 -0400 |
parents | 1eac99a280a2 |
children | cadc73247d65 |
line wrap: on
line source
## Copyright (C) 2008 VZLU Prague, a.s., Czech Republic ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{c} =} dmult (@var{a}, @var{b}) ## @deftypefnx {Function File} {@var{c} =} dmult (@var{a}, @var{b}, @var{ind}) ## Scale a matrix by rows or columns, or a multidimensional tensor along ## a specified dimension. ## If @var{a} is a vector of length @code{rows (@var{b})}, return ## @code{diag (@var{a}) * @var{b}} (but computed much more efficiently). ## Similarly, if @var{b} is a vector of length @code{columns(@var{a})}, ## return @code{@var{a} * diag(@var{b})}. ## ## If @var{b} is a multidimensional array and @var{a} a vector, ## @var{c} will have the same shape as @var{b}, with ## @code{@var{C}(i,:,@dots{}) = @var{a}(i)*@var{b}(i,:,@dots{})}. ## ## If @var{a} is a multidimensional array and @var{b} a vector, ## @var{c} will have the same shape as @var{a}, with ## @code{@var{C}(:,@dots{},i) = @var{a}(:,@dots{},i)*@var{b}(i)}. ## ## If @var{ind} is supplied, @var{a} should be an array and @var{b} ## a vector of length @code{size (@var{a},index)}. The result is then ## @code{@var{C}(:,@dots{},i,:,@dots{}) = @var{a}(:,@dots{},i,:,@dots{})*@var{b}(i)} ## where i indexes the @var{ind}-th dimension. ## @end deftypefn ## Author: Jaroslav Hajek <highegg@gmail.com> ## Description: Scale a tensor along a dimension ### Original Author: KH <Kurt.Hornik@wu-wien.ac.at> ### Original Description: Rescale the rows of a matrix function m = dmult (a, b, ind) if (nargin == 2) sa = size (a); sb = size (b); if (isvector (a) && length (a) == sb(1)) a = a(:); m = reshape (kron (ones (prod (sb(2:end)), 1), a), sb) .* b; elseif (isvector (b) && length (b) == sa(end)) b = b(:); m = reshape (kron (b, ones (prod (sa (1:end-1)), 1)), sa) .* a; else error ("dmult: dimensions mismatch"); endif elseif (nargin == 3 && isscalar (ind)) if (isvector (b) && ind > 0 && ind <= ndims (a) && length (b) == size (a, ind)) b = b(:); sa = size (a); sal = prod (sa(1:ind-1)); sat = prod (sa(ind+1:end)); s = kron (ones (sat, 1), kron (b, ones (sal, 1))); m = reshape (s, sa) .* a; else error ("dmult: dimensions mismatch or index out of range") endif else print_usage (); endif endfunction %!test %! assert ( dmult ([1,2,3], ones(3)), [1,1,1;2,2,2;3,3,3] ) %! assert ( dmult ([1,2,3]', ones(3)), [1,1,1;2,2,2;3,3,3] ) %!test %! assert ( dmult ([1,2,3], ones(3,2,2)), reshape ([1,1,1,1;2,2,2,2;3,3,3,3], [3,2,2]) ) %!test %! assert ( dmult (ones(3), [1,2,3]), [1,2,3;1,2,3;1,2,3] ) %! assert ( dmult (ones(3), [1,2,3]'), [1,2,3;1,2,3;1,2,3] ) %!test %! assert ( dmult (ones(2,2,3), [1,2,3]), reshape ([1,2,3;1,2,3;1,2,3;1,2,3], [2,2,3]) ) %!test %! assert ( dmult (ones(3,4,2), [1 2 3 4], 2),... %! reshape ([1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4], [3,4,2]) )