Mercurial > hg > octave-nkf
view scripts/specfun/legendre.m @ 20821:395140e53656
Fix regression in svg output and simplify viewport handling (bug #44765)
* gl2ps-renderer.cc (glps-renderer::draw): remove check for GL2PS_NO_FEEDBACK, it it always true after EndViewport
* gl2ps-renderer.h (glps-renderer::draw_axes): call gl2psBegin(End)Viewport for every axes and check for GL2PS_NO_FEEDBACK after each axes.
* gl2ps-renderer.h (glps-renderer::draw_axes):remove unnecessary "naxes" attribute
author | Pantxo Diribarne <pantxo.diribarne@gmail.com> |
---|---|
date | Mon, 12 Oct 2015 20:49:04 +0200 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 2000-2015 Kai Habel ## Copyright (C) 2008 Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{l} =} legendre (@var{n}, @var{x}) ## @deftypefnx {Function File} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization}) ## Compute the Legendre function of degree @var{n} and order ## @var{m} = 0 @dots{} @var{n}. ## ## The value @var{n} must be a real non-negative integer. ## ## @var{x} is a vector with real-valued elements in the range [-1, 1]. ## ## The optional argument @var{normalization} may be one of @qcode{"unnorm"}, ## @qcode{"sch"}, or @qcode{"norm"}. The default if no normalization is given ## is @qcode{"unnorm"}. ## ## When the optional argument @var{normalization} is @qcode{"unnorm"}, compute ## the Legendre function of degree @var{n} and order @var{m} and return all ## values for @var{m} = 0 @dots{} @var{n}. The return value has one dimension ## more than @var{x}. ## ## The Legendre Function of degree @var{n} and order @var{m}: ## ## @tex ## $$ ## P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P(x) ## n dx^m n ## @end group ## @end example ## ## @end ifnottex ## ## @noindent ## with Legendre polynomial of degree @var{n}: ## ## @tex ## $$ ## P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 1 d^n 2 n ## P(x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## @end example ## ## @end ifnottex ## ## @noindent ## @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix: ## ## @example ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## ## When the optional argument @code{normalization} is @qcode{"sch"}, compute ## the Schmidt semi-normalized associated Legendre function. The Schmidt ## semi-normalized associated Legendre function is related to the unnormalized ## Legendre functions by the following: ## ## For Legendre functions of degree @var{n} and order 0: ## ## @tex ## $$ ## SP^0_n (x) = P^0_n (x) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 0 0 ## SP(x) = P(x) ## n n ## @end group ## @end example ## ## @end ifnottex ## ## For Legendre functions of degree n and order m: ## ## @tex ## $$ ## SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m m 2(n-m)! 0.5 ## SP(x) = P(x) * (-1) * [-------] ## n n (n+m)! ## @end group ## @end example ## ## @end ifnottex ## ## When the optional argument @var{normalization} is @qcode{"norm"}, compute ## the fully normalized associated Legendre function. The fully normalized ## associated Legendre function is related to the unnormalized Legendre ## functions by the following: ## ## For Legendre functions of degree @var{n} and order @var{m} ## ## @tex ## $$ ## NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m m (n+0.5)(n-m)! 0.5 ## NP(x) = P(x) * (-1) * [-------------] ## n n (n+m)! ## @end group ## @end example ## ## @end ifnottex ## @end deftypefn ## Author: Marco Caliari <marco.caliari@univr.it> function retval = legendre (n, x, normalization) persistent warned_overflow = false; if (nargin < 2 || nargin > 3) print_usage (); endif if (! isreal (n) || ! isscalar (n) || n < 0 || n != fix (n)) error ("legendre: N must be a real non-negative integer"); elseif (! isreal (x) || any (x(:) < -1 | x(:) > 1)) error ("legendre: X must be real-valued vector in the range -1 <= X <= 1"); endif if (nargin == 3) normalization = lower (normalization); else normalization = "unnorm"; endif unnorm = false; switch (normalization) case "unnorm" scale = 1; unnorm = true; case "norm" scale = sqrt (n+0.5); case "sch" scale = sqrt (2); otherwise error ('legendre: NORMALIZATION option must be "unnorm", "norm", or "sch"'); endswitch scale *= ones (size (x)); ## Based on the recurrence relation below ## m m m ## (n-m+1) * P (x) = (2*n+1)*x*P (x) - (n+1)*P (x) ## n+1 n n-1 ## http://en.wikipedia.org/wiki/Associated_Legendre_function overflow = false; retval = zeros ([n+1, size(x)]); for m = 1:n lpm1 = scale; lpm2 = (2*m-1) .* x .* scale; lpm3 = lpm2; for k = m+1:n lpm3a = (2*k-1) .* x .* lpm2; lpm3b = (k+m-2) .* lpm1; lpm3 = (lpm3a - lpm3b) / (k-m+1); lpm1 = lpm2; lpm2 = lpm3; if (! warned_overflow) if ( any (abs (lpm3a) > realmax) || any (abs (lpm3b) > realmax) || any (abs (lpm3) > realmax)) overflow = true; endif endif endfor retval(m,:) = lpm3(:); if (unnorm) scale *= -(2*m-1); else # normalization = "sch" or "norm" scale *= (2*m-1) / sqrt ((n-m+1)*(n+m)); endif scale .*= sqrt (1-x.^2); endfor retval(n+1,:) = scale(:); if (isvector (x)) ## vector case is special retval = reshape (retval, n + 1, length (x)); endif if (strcmp (normalization, "sch")) retval(1,:) ./= sqrt (2); endif if (overflow && ! warned_overflow) warning ("legendre: overflow - results may be unstable for high orders"); warned_overflow = true; endif endfunction %!test %! result = legendre (3, [-1.0 -0.9 -0.8]); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 -1.99420 -1.98000 %! 0.00000 -2.56500 -4.32000 %! 0.00000 -1.24229 -3.24000 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "sch"); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 0.81413 0.80833 %! -0.00000 -0.33114 -0.55771 %! 0.00000 0.06547 0.17076 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "norm"); %! expected = [ %! -1.87083 -0.88397 -0.14967 %! 0.00000 1.07699 1.06932 %! -0.00000 -0.43806 -0.73778 %! 0.00000 0.08661 0.22590 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (151, 0); %! ## Don't compare to "-Inf" since it would fail on 64 bit systems. %! assert (result(end) < -1.7976e308 && all (isfinite (result(1:end-1)))); %!test %! result = legendre (150, 0); %! ## This agrees with Matlab's result. %! assert (result(end), 3.7532741115719e+306, 0.0000000000001e+306); %!test %! result = legendre (0, 0:0.1:1); %! assert (result, full (ones (1,11))); %!test %! ## Test matrix input %! result = legendre (3, [-1,0,1;1,0,-1]); %! expected(:,:,1) = [-1,1;0,0;0,0;0,0]; %! expected(:,:,2) = [0,0;1.5,1.5;0,0;-15,-15]; %! expected(:,:,3) = [1,-1;0,0;0,0;0,0]; %! assert (result, expected); %!test %! result = legendre (3, [-1,0,1;1,0,-1]'); %! expected(:,:,1) = [-1,0,1;0,1.5,0;0,0,0;0,-15,0]; %! expected(:,:,2) = [1,0,-1;0,1.5,0;0,0,0;0,-15,0]; %! assert (result, expected); ## Test input validation %!error legendre () %!error legendre (1) %!error legendre (1,2,3,4) %!error <must be a real non-negative integer> legendre (i, [-1, 0, 1]) %!error <must be a real non-negative integer> legendre ([1, 2], [-1, 0, 1]) %!error <must be a real non-negative integer> legendre (-1, [-1, 0, 1]) %!error <must be a real non-negative integer> legendre (1.1, [-1, 0, 1]) %!error <must be real-valued vector> legendre (1, [-1+i, 0, 1]) %!error <in the range -1 .= X .= 1> legendre (1, [-2, 0, 1]) %!error <in the range -1 .= X .= 1> legendre (1, [-1, 0, 2]) %!error <NORMALIZATION option must be> legendre (1, [-1, 0, 1], "badnorm")