Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/sparse.cc @ 6774:3b09c87d5165
[project @ 2007-07-13 13:27:36 by dbateman]
author | dbateman |
---|---|
date | Fri, 13 Jul 2007 13:27:36 +0000 |
parents | 315bc7c8f9b5 |
children | 8b0cfeb06365 |
line wrap: on
line source
/* Copyright (C) 2004 David Bateman Copyright (C) 1998-2004 Andy Adler Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cstdlib> #include <string> #include "variables.h" #include "utils.h" #include "pager.h" #include "defun-dld.h" #include "gripes.h" #include "quit.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-bool-sparse.h" static bool is_sparse (const octave_value& arg) { return (arg.is_sparse_type ()); } DEFUN_DLD (issparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} issparse (@var{expr})\n\ Return 1 if the value of the expression @var{expr} is a sparse matrix.\n\ @end deftypefn") { if (args.length() != 1) { print_usage (); return octave_value (); } else return octave_value (is_sparse (args(0))); } DEFUN_DLD (sparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{s} =} sparse (@var{a})\n\ Create a sparse matrix from the full matrix @var{a}.\n\ is forced back to a full matrix is resulting matrix is sparse\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{a}, 1)\n\ Create a sparse matrix and convert it back to a full matrix.\n\ is forced back to a full matrix is resulting matrix is sparse\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv}, @var{m}, @var{n}, @var{nzmax})\n\ Create a sparse matrix given integer index vectors @var{i} and @var{j},\n\ a 1-by-@code{nnz} vector of real of complex values @var{sv}, overall\n\ dimensions @var{m} and @var{n} of the sparse matrix. The argument\n\ @code{nzmax} is ignored but accepted for compatability with @sc{Matlab}.\n\ \n\ @strong{Note}: if multiple values are specified with the same\n\ @var{i}, @var{j} indices, the corresponding values in @var{s} will\n\ be added.\n\ \n\ The following are all equivalent:\n\ \n\ @example\n\ @group\n\ s = sparse (i, j, s, m, n)\n\ s = sparse (i, j, s, m, n, \"summation\")\n\ s = sparse (i, j, s, m, n, \"sum\")\n\ @end group\n\ @end example\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{s}, @var{m}, @var{n}, \"unique\")\n\ Same as above, except that if more than two values are specified for the\n\ same @var{i}, @var{j} indices, the last specified value will be used.\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv})\n\ Uses @code{@var{m} = max (@var{i})}, @code{@var{n} = max (@var{j})}\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{m}, @var{n})\n\ Equivalent to @code{sparse ([], [], [], @var{m}, @var{n}, 0)}\n\ \n\ If any of @var{sv}, @var{i} or @var{j} are scalars, they are expanded\n\ to have a common size.\n\ @seealso{full}\n\ @end deftypefn") { octave_value retval; bool mutate = false; // WARNING: This function should always use constructions like // retval = new octave_sparse_matrix (sm); // To avoid calling the maybe_mutate function. This is the only // function that should not call maybe_mutate, or at least only // in very particular cases. int nargin= args.length(); if (nargin < 1 || (nargin == 4 && !args(3).is_string ()) || nargin > 6) { print_usage (); return retval; } bool use_complex = false; bool use_bool = false; if (nargin > 2) { use_complex= args(2).is_complex_type(); use_bool = args(2).is_bool_type (); } else { use_complex= args(0).is_complex_type(); use_bool = args(0).is_bool_type (); } if (nargin == 2 && ! args(0).is_scalar_type() && args(1).is_scalar_type()) mutate = (args(1).double_value() != 0.); if (nargin == 1 || (nargin == 2 && ! args(0).is_scalar_type() && args(1).is_scalar_type())) { octave_value arg = args (0); if (is_sparse (arg)) { if (use_complex) { SparseComplexMatrix sm = arg.sparse_complex_matrix_value (); retval = new octave_sparse_complex_matrix (sm); } else if (use_bool) { SparseBoolMatrix sm = arg.sparse_bool_matrix_value (); retval = new octave_sparse_bool_matrix (sm); } else { SparseMatrix sm = arg.sparse_matrix_value (); retval = new octave_sparse_matrix (sm); } } else { if (use_complex) { SparseComplexMatrix sm (args (0).complex_matrix_value ()); if (error_state) return retval; retval = new octave_sparse_complex_matrix (sm); } else if (use_bool) { SparseBoolMatrix sm (args (0).bool_matrix_value ()); if (error_state) return retval; retval = new octave_sparse_bool_matrix (sm); } else { SparseMatrix sm (args (0).matrix_value ()); if (error_state) return retval; retval = new octave_sparse_matrix (sm); } } } else { octave_idx_type m = 1, n = 1; if (nargin == 2) { m = args(0).int_value(); n = args(1).int_value(); if (error_state) return retval; if (use_complex) retval = new octave_sparse_complex_matrix (SparseComplexMatrix (m, n)); else if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (m, n)); else retval = new octave_sparse_matrix (SparseMatrix (m, n)); } else { if (args(0).is_empty () || args (1).is_empty () || args(2).is_empty ()) { if (nargin > 4) { m = args(3).int_value(); n = args(4).int_value(); } if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (m, n)); else retval = new octave_sparse_matrix (SparseMatrix (m, n)); } else { // // I use this clumsy construction so that we can use // any orientation of args ColumnVector ridxA = ColumnVector (args(0).vector_value (false, true)); ColumnVector cidxA = ColumnVector (args(1).vector_value (false, true)); ColumnVector coefA; boolNDArray coefAB; ComplexColumnVector coefAC; bool assemble_do_sum = true; // this is the default in matlab6 if (use_complex) { if (args(2).is_empty ()) coefAC = ComplexColumnVector (0); else coefAC = ComplexColumnVector (args(2).complex_vector_value (false, true)); } else if (use_bool) { if (args(2).is_empty ()) coefAB = boolNDArray (dim_vector (1, 0)); else coefAB = args(2).bool_array_value (); dim_vector AB_dims = coefAB.dims (); if (AB_dims.length() > 2 || (AB_dims(0) != 1 && AB_dims(1) != 1)) error ("sparse: vector arguments required"); } else if (args(2).is_empty ()) coefA = ColumnVector (0); else coefA = ColumnVector (args(2).vector_value (false, true)); if (error_state) return retval; // Confirm that i,j,s all have the same number of elements octave_idx_type ns; if (use_complex) ns = coefAC.length(); else if (use_bool) ns = coefAB.length(); else ns = coefA.length(); octave_idx_type ni = ridxA.length(); octave_idx_type nj = cidxA.length(); octave_idx_type nnz = (ni > nj ? ni : nj); if ((ns != 1 && ns != nnz) || (ni != 1 && ni != nnz) || (nj != 1 && nj != nnz)) { error ("sparse i, j and s must have the same length"); return retval; } if (nargin == 3 || nargin == 4) { m = static_cast<octave_idx_type> (ridxA.max()); n = static_cast<octave_idx_type> (cidxA.max()); // if args(3) is not string, then ignore the value // otherwise check for summation or unique if (nargin == 4 && args(3).is_string()) { std::string vv= args(3).string_value(); if (error_state) return retval; if ( vv == "summation" || vv == "sum" ) assemble_do_sum = true; else if ( vv == "unique" ) assemble_do_sum = false; else { error("sparse repeat flag must be 'sum' or 'unique'"); return retval; } } } else { m = args(3).int_value(); n = args(4).int_value(); if (error_state) return retval; // if args(5) is not string, then ignore the value // otherwise check for summation or unique if (nargin >= 6 && args(5).is_string()) { std::string vv= args(5).string_value(); if (error_state) return retval; if ( vv == "summation" || vv == "sum" ) assemble_do_sum = true; else if ( vv == "unique" ) assemble_do_sum = false; else { error("sparse repeat flag must be 'sum' or 'unique'"); return retval; } } } // Convert indexing to zero-indexing used internally ridxA -= 1.; cidxA -= 1.; if (use_complex) retval = new octave_sparse_complex_matrix (SparseComplexMatrix (coefAC, ridxA, cidxA, m, n, assemble_do_sum)); else if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (coefAB, ridxA, cidxA, m, n, assemble_do_sum)); else retval = new octave_sparse_matrix (SparseMatrix (coefA, ridxA, cidxA, m, n, assemble_do_sum)); } } } // Only called in very particular cases, not the default case if (mutate) retval.maybe_mutate (); return retval; } DEFUN_DLD (full, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{FM} =} full (@var{SM})\n\ returns a full storage matrix from a sparse one\n\ @seealso{sparse}\n\ @end deftypefn") { octave_value retval; if (args.length() < 1) { print_usage (); return retval; } if (args(0).is_sparse_type ()) { if (args(0).type_name () == "sparse matrix") retval = args(0).matrix_value (); else if (args(0).type_name () == "sparse complex matrix") retval = args(0).complex_matrix_value (); else if (args(0).type_name () == "sparse bool matrix") retval = args(0).bool_matrix_value (); } else if (args(0).is_real_type()) retval = args(0).matrix_value(); else if (args(0).is_complex_type()) retval = args(0).complex_matrix_value(); else gripe_wrong_type_arg ("full", args(0)); return retval; } #define SPARSE_DIM_ARG_BODY(NAME, FUNC) \ int nargin = args.length(); \ octave_value retval; \ if ((nargin != 1 ) && (nargin != 2)) \ print_usage (); \ else { \ int dim = (nargin == 1 ? -1 : args(1).int_value(true) - 1); \ if (error_state) return retval; \ if (dim < -1 || dim > 1) { \ error (#NAME ": invalid dimension argument = %d", dim + 1); \ return retval; \ } \ if (args(0).type_id () == \ octave_sparse_matrix::static_type_id () || args(0).type_id () == \ octave_sparse_bool_matrix::static_type_id ()) { \ retval = args(0).sparse_matrix_value () .FUNC (dim); \ } else if (args(0).type_id () == \ octave_sparse_complex_matrix::static_type_id ()) { \ retval = args(0).sparse_complex_matrix_value () .FUNC (dim); \ } else \ print_usage (); \ } \ return retval // PKG_ADD: dispatch ("prod", "spprod", "sparse matrix"); // PKG_ADD: dispatch ("prod", "spprod", "sparse complex matrix"); // PKG_ADD: dispatch ("prod", "spprod", "sparse bool matrix"); DEFUN_DLD (spprod, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{y} =} spprod (@var{x},@var{dim})\n\ Product of elements along dimension @var{dim}. If @var{dim} is omitted,\n\ it defaults to 1 (column-wise products).\n\ @seealso{spsum, spsumsq}\n\ @end deftypefn") { SPARSE_DIM_ARG_BODY (spprod, prod); } // PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse matrix"); // PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse complex matrix"); // PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse bool matrix"); DEFUN_DLD (spcumprod, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{y} =} spcumprod (@var{x},@var{dim})\n\ Cumulative product of elements along dimension @var{dim}. If @var{dim}\n\ is omitted, it defaults to 1 (column-wise cumulative products).\n\ @seealso{spcumsum}\n\ @end deftypefn") { SPARSE_DIM_ARG_BODY (spcumprod, cumprod); } // PKG_ADD: dispatch ("sum", "spsum", "sparse matrix"); // PKG_ADD: dispatch ("sum", "spsum", "sparse complex matrix"); // PKG_ADD: dispatch ("sum", "spsum", "sparse bool matrix"); DEFUN_DLD (spsum, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{y} =} spsum (@var{x},@var{dim})\n\ Sum of elements along dimension @var{dim}. If @var{dim} is omitted, it\n\ defaults to 1 (column-wise sum).\n\ @seealso{spprod, spsumsq}\n\ @end deftypefn") { SPARSE_DIM_ARG_BODY (spsum, sum); } // PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse matrix"); // PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse complex matrix"); // PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse bool matrix"); DEFUN_DLD (spcumsum, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{y} =} spcumsum (@var{x},@var{dim})\n\ Cumulative sum of elements along dimension @var{dim}. If @var{dim}\n\ is omitted, it defaults to 1 (column-wise cumulative sums).\n\ @seealso{spcumprod}\n\ @end deftypefn") { SPARSE_DIM_ARG_BODY (spcumsum, cumsum); } // PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse matrix"); // PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse complex matrix"); // PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse bool matrix"); DEFUN_DLD (spsumsq, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{y} =} spsumsq (@var{x},@var{dim})\n\ Sum of squares of elements along dimension @var{dim}. If @var{dim}\n\ is omitted, it defaults to 1 (column-wise sum of squares).\n\ This function is equivalent to computing\n\ @example\n\ spsum (x .* spconj (x), dim)\n\ @end example\n\ but it uses less memory and avoids calling @code{spconj} if @var{x} is\n\ real.\n\ @seealso{spprod, spsum}\n\ @end deftypefn") { SPARSE_DIM_ARG_BODY (spsumsq, sumsq); } #define MINMAX_BODY(FCN) \ \ octave_value_list retval; \ \ int nargin = args.length (); \ \ if (nargin < 1 || nargin > 3 || nargout > 2) \ { \ print_usage (); \ return retval; \ } \ \ octave_value arg1; \ octave_value arg2; \ octave_value arg3; \ \ switch (nargin) \ { \ case 3: \ arg3 = args(2); \ \ case 2: \ arg2 = args(1); \ \ case 1: \ arg1 = args(0); \ break; \ \ default: \ panic_impossible (); \ break; \ } \ \ int dim; \ dim_vector dv = arg1.dims (); \ if (error_state) \ { \ gripe_wrong_type_arg (#FCN, arg1); \ return retval; \ } \ \ if (nargin == 3) \ { \ dim = arg3.nint_value () - 1; \ if (dim < 0 || dim >= dv.length ()) \ { \ error ("%s: invalid dimension", #FCN); \ return retval; \ } \ } \ else \ { \ dim = 0; \ while ((dim < dv.length ()) && (dv (dim) <= 1)) \ dim++; \ if (dim == dv.length ()) \ dim = 0; \ } \ \ bool single_arg = (nargin == 1) || arg2.is_empty(); \ \ if (single_arg && (nargout == 1 || nargout == 0)) \ { \ if (arg1.type_id () == octave_sparse_matrix::static_type_id ()) \ retval(0) = arg1.sparse_matrix_value () .FCN (dim); \ else if (arg1.type_id () == \ octave_sparse_complex_matrix::static_type_id ()) \ retval(0) = arg1.sparse_complex_matrix_value () .FCN (dim); \ else \ gripe_wrong_type_arg (#FCN, arg1); \ } \ else if (single_arg && nargout == 2) \ { \ Array2<octave_idx_type> index; \ \ if (arg1.type_id () == octave_sparse_matrix::static_type_id ()) \ retval(0) = arg1.sparse_matrix_value () .FCN (index, dim); \ else if (arg1.type_id () == \ octave_sparse_complex_matrix::static_type_id ()) \ retval(0) = arg1.sparse_complex_matrix_value () .FCN (index, dim); \ else \ gripe_wrong_type_arg (#FCN, arg1); \ \ octave_idx_type len = index.numel (); \ \ if (len > 0) \ { \ double nan_val = lo_ieee_nan_value (); \ \ NDArray idx (index.dims ()); \ \ for (octave_idx_type i = 0; i < len; i++) \ { \ OCTAVE_QUIT; \ octave_idx_type tmp = index.elem (i) + 1; \ idx.elem (i) = (tmp <= 0) \ ? nan_val : static_cast<double> (tmp); \ } \ \ retval(1) = idx; \ } \ else \ retval(1) = NDArray (); \ } \ else \ { \ int arg1_is_scalar = arg1.is_scalar_type (); \ int arg2_is_scalar = arg2.is_scalar_type (); \ \ int arg1_is_complex = arg1.is_complex_type (); \ int arg2_is_complex = arg2.is_complex_type (); \ \ if (arg1_is_scalar) \ { \ if (arg1_is_complex || arg2_is_complex) \ { \ Complex c1 = arg1.complex_value (); \ \ SparseComplexMatrix m2 = arg2.sparse_complex_matrix_value (); \ \ if (! error_state) \ { \ SparseComplexMatrix result = FCN (c1, m2); \ if (! error_state) \ retval(0) = result; \ } \ } \ else \ { \ double d1 = arg1.double_value (); \ SparseMatrix m2 = arg2.sparse_matrix_value (); \ \ if (! error_state) \ { \ SparseMatrix result = FCN (d1, m2); \ if (! error_state) \ retval(0) = result; \ } \ } \ } \ else if (arg2_is_scalar) \ { \ if (arg1_is_complex || arg2_is_complex) \ { \ SparseComplexMatrix m1 = arg1.sparse_complex_matrix_value (); \ \ if (! error_state) \ { \ Complex c2 = arg2.complex_value (); \ SparseComplexMatrix result = FCN (m1, c2); \ if (! error_state) \ retval(0) = result; \ } \ } \ else \ { \ SparseMatrix m1 = arg1.sparse_matrix_value (); \ \ if (! error_state) \ { \ double d2 = arg2.double_value (); \ SparseMatrix result = FCN (m1, d2); \ if (! error_state) \ retval(0) = result; \ } \ } \ } \ else \ { \ if (arg1_is_complex || arg2_is_complex) \ { \ SparseComplexMatrix m1 = arg1.sparse_complex_matrix_value (); \ \ if (! error_state) \ { \ SparseComplexMatrix m2 = arg2.sparse_complex_matrix_value (); \ \ if (! error_state) \ { \ SparseComplexMatrix result = FCN (m1, m2); \ if (! error_state) \ retval(0) = result; \ } \ } \ } \ else \ { \ SparseMatrix m1 = arg1.sparse_matrix_value (); \ \ if (! error_state) \ { \ SparseMatrix m2 = arg2.sparse_matrix_value (); \ \ if (! error_state) \ { \ SparseMatrix result = FCN (m1, m2); \ if (! error_state) \ retval(0) = result; \ } \ } \ } \ } \ } \ \ return retval // PKG_ADD: dispatch ("min", "spmin", "sparse matrix"); // PKG_ADD: dispatch ("min", "spmin", "sparse complex matrix"); // PKG_ADD: dispatch ("min", "spmin", "sparse bool matrix"); DEFUN_DLD (spmin, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} spmin (@var{x}, @var{y}, @var{dim})\n\ @deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} spmin (@var{x})\n\ @cindex Utility Functions\n\ For a vector argument, return the minimum value. For a matrix\n\ argument, return the minimum value from each column, as a row\n\ vector, or over the dimension @var{dim} if defined. For two matrices\n\ (or a matrix and scalar), return the pair-wise minimum.\n\ Thus,\n\ \n\ @example\n\ min (min (@var{x}))\n\ @end example\n\ \n\ @noindent\n\ returns the smallest element of @var{x}, and\n\ \n\ @example\n\ @group\n\ min (2:5, pi)\n\ @result{} 2.0000 3.0000 3.1416 3.1416\n\ @end group\n\ @end example\n\ @noindent\n\ compares each element of the range @code{2:5} with @code{pi}, and\n\ returns a row vector of the minimum values.\n\ \n\ For complex arguments, the magnitude of the elements are used for\n\ comparison.\n\ \n\ If called with one input and two output arguments,\n\ @code{min} also returns the first index of the\n\ minimum value(s). Thus,\n\ \n\ @example\n\ @group\n\ [x, ix] = min ([1, 3, 0, 2, 5])\n\ @result{} x = 0\n\ ix = 3\n\ @end group\n\ @end example\n\ @end deftypefn") { MINMAX_BODY (min); } // PKG_ADD: dispatch ("max", "spmax", "sparse matrix"); // PKG_ADD: dispatch ("max", "spmax", "sparse complex matrix"); // PKG_ADD: dispatch ("max", "spmax", "sparse bool matrix"); DEFUN_DLD (spmax, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} spmax (@var{x}, @var{y}, @var{dim})\n\ @deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} spmax (@var{x})\n\ @cindex Utility Functions\n\ For a vector argument, return the maximum value. For a matrix\n\ argument, return the maximum value from each column, as a row\n\ vector, or over the dimension @var{dim} if defined. For two matrices\n\ (or a matrix and scalar), return the pair-wise maximum.\n\ Thus,\n\ \n\ @example\n\ max (max (@var{x}))\n\ @end example\n\ \n\ @noindent\n\ returns the largest element of @var{x}, and\n\ \n\ @example\n\ @group\n\ max (2:5, pi)\n\ @result{} 3.1416 3.1416 4.0000 5.0000\n\ @end group\n\ @end example\n\ @noindent\n\ compares each element of the range @code{2:5} with @code{pi}, and\n\ returns a row vector of the maximum values.\n\ \n\ For complex arguments, the magnitude of the elements are used for\n\ comparison.\n\ \n\ If called with one input and two output arguments,\n\ @code{max} also returns the first index of the\n\ maximum value(s). Thus,\n\ \n\ @example\n\ @group\n\ [x, ix] = max ([1, 3, 5, 2, 5])\n\ @result{} x = 5\n\ ix = 3\n\ @end group\n\ @end example\n\ @end deftypefn") { MINMAX_BODY (max); } // PKG_ADD: dispatch ("atan2", "spatan2", "sparse matrix"); // PKG_ADD: dispatch ("atan2", "spatan2", "sparse complex matrix"); // PKG_ADD: dispatch ("atan2", "spatan2", "sparse bool matrix"); DEFUN_DLD (spatan2, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} spatan2 (@var{y}, @var{x})\n\ Compute atan (Y / X) for corresponding sparse matrix elements of Y and X.\n\ The result is in range -pi to pi.\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 2) { SparseMatrix a, b; double da, db; bool is_double_a = false; bool is_double_b = false; if (args(0).is_scalar_type ()) { is_double_a = true; da = args(0).double_value(); } else a = args(0).sparse_matrix_value (); if (args(1).is_scalar_type ()) { is_double_b = true; db = args(1).double_value(); } else b = args(1).sparse_matrix_value (); if (is_double_a && is_double_b) retval = Matrix (1, 1, atan2(da, db)); else if (is_double_a) retval = atan2 (da, b); else if (is_double_b) retval = atan2 (a, db); else retval = atan2 (a, b); } else print_usage (); return retval; } static octave_value make_spdiag (const octave_value& a, const octave_value& b) { octave_value retval; if (a.is_complex_type ()) { SparseComplexMatrix m = a.sparse_complex_matrix_value (); octave_idx_type k = b.nint_value(true); if (error_state) return retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); if (nr == 0 || nc == 0) retval = m; else if (nr == 1 || nc == 1) { octave_idx_type roff = 0; octave_idx_type coff = 0; if (k > 0) { roff = 0; coff = k; } else if (k < 0) { k = -k; roff = k; coff = 0; } if (nr == 1) { octave_idx_type n = nc + k; octave_idx_type nz = m.nzmax (); SparseComplexMatrix r (n, n, nz); for (octave_idx_type i = 0; i < coff+1; i++) r.xcidx (i) = 0; for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) { r.xdata (i) = m.data (i); r.xridx (i) = j + roff; } r.xcidx (j+coff+1) = m.cidx(j+1); } for (octave_idx_type i = nc+coff+1; i < n+1; i++) r.xcidx (i) = nz; retval = r; } else { octave_idx_type n = nr + k; octave_idx_type nz = m.nzmax (); octave_idx_type ii = 0; octave_idx_type ir = m.ridx(0); SparseComplexMatrix r (n, n, nz); for (octave_idx_type i = 0; i < coff+1; i++) r.xcidx (i) = 0; for (octave_idx_type i = 0; i < nr; i++) { if (ir == i) { r.xdata (ii) = m.data (ii); r.xridx (ii++) = ir + roff; if (ii != nz) ir = m.ridx (ii); } r.xcidx (i+coff+1) = ii; } for (octave_idx_type i = nr+coff+1; i < n+1; i++) r.xcidx (i) = nz; retval = r; } } else { SparseComplexMatrix r = m.diag (k); // Don't use numel, since it can overflow for very large matrices if (r.rows () > 0 && r.cols () > 0) retval = r; } } else if (a.is_real_type ()) { SparseMatrix m = a.sparse_matrix_value (); octave_idx_type k = b.nint_value(true); if (error_state) return retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.columns (); if (nr == 0 || nc == 0) retval = m; else if (nr == 1 || nc == 1) { octave_idx_type roff = 0; octave_idx_type coff = 0; if (k > 0) { roff = 0; coff = k; } else if (k < 0) { k = -k; roff = k; coff = 0; } if (nr == 1) { octave_idx_type n = nc + k; octave_idx_type nz = m.nzmax (); SparseMatrix r (n, n, nz); for (octave_idx_type i = 0; i < coff+1; i++) r.xcidx (i) = 0; for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = m.cidx(j); i < m.cidx(j+1); i++) { r.xdata (i) = m.data (i); r.xridx (i) = j + roff; } r.xcidx (j+coff+1) = m.cidx(j+1); } for (octave_idx_type i = nc+coff+1; i < n+1; i++) r.xcidx (i) = nz; retval = r; } else { octave_idx_type n = nr + k; octave_idx_type nz = m.nzmax (); octave_idx_type ii = 0; octave_idx_type ir = m.ridx(0); SparseMatrix r (n, n, nz); for (octave_idx_type i = 0; i < coff+1; i++) r.xcidx (i) = 0; for (octave_idx_type i = 0; i < nr; i++) { if (ir == i) { r.xdata (ii) = m.data (ii); r.xridx (ii++) = ir + roff; if (ii != nz) ir = m.ridx (ii); } r.xcidx (i+coff+1) = ii; } for (octave_idx_type i = nr+coff+1; i < n+1; i++) r.xcidx (i) = nz; retval = r; } } else { SparseMatrix r = m.diag (k); if (r.rows () > 0 && r.cols () > 0) retval = r; } } else gripe_wrong_type_arg ("spdiag", a); return retval; } static octave_value make_spdiag (const octave_value& a) { octave_value retval; octave_idx_type nr = a.rows (); octave_idx_type nc = a.columns (); if (nr == 0 || nc == 0) retval = SparseMatrix (); else retval = make_spdiag (a, octave_value (0.)); return retval; } // PKG_ADD: dispatch ("diag", "spdiag", "sparse matrix"); // PKG_ADD: dispatch ("diag", "spdiag", "sparse complex matrix"); // PKG_ADD: dispatch ("diag", "spdiag", "sparse bool matrix"); DEFUN_DLD (spdiag, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} spdiag (@var{v}, @var{k})\n\ Return a diagonal matrix with the sparse vector @var{v} on diagonal\n\ @var{k}. The second argument is optional. If it is positive, the vector is\n\ placed on the @var{k}-th super-diagonal. If it is negative, it is placed\n\ on the @var{-k}-th sub-diagonal. The default value of @var{k} is 0, and\n\ the vector is placed on the main diagonal. For example,\n\ \n\ @example\n\ @group\n\ spdiag ([1, 2, 3], 1)\n\ ans =\n\ \n\ Compressed Column Sparse (rows=4, cols=4, nnz=3)\n\ (1 , 2) -> 1\n\ (2 , 3) -> 2\n\ (3 , 4) -> 3\n\ @end group\n\ @end example\n\ \n\ @noindent\n\ Given a matrix argument, instead of a vector, @code{spdiag} extracts the\n\ @var{k}-th diagonal of the sparse matrix.\n\ @seealso{diag}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1 && args(0).is_defined ()) retval = make_spdiag (args(0)); else if (nargin == 2 && args(0).is_defined () && args(1).is_defined ()) retval = make_spdiag (args(0), args(1)); else print_usage (); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */