Mercurial > hg > octave-nkf
view scripts/geometry/voronoi.m @ 18633:3f2a95a4b98d draft lyh-review
jit compiler: use existing int functions
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Sun, 24 Nov 2013 22:46:32 +0100 |
parents | 5646f999245d |
children | 0e1f5a750d00 |
line wrap: on
line source
## Copyright (C) 2000-2013 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} voronoi (@var{x}, @var{y}) ## @deftypefnx {Function File} {} voronoi (@var{x}, @var{y}, @var{options}) ## @deftypefnx {Function File} {} voronoi (@dots{}, "linespec") ## @deftypefnx {Function File} {} voronoi (@var{hax}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} voronoi (@dots{}) ## @deftypefnx {Function File} {[@var{vx}, @var{vy}] =} voronoi (@dots{}) ## Plot the Voronoi diagram of points @code{(@var{x}, @var{y})}. ## The Voronoi facets with points at infinity are not drawn. ## ## If @qcode{"linespec"} is given it is used to set the color and line style ## of the plot. If an axis graphics handle @var{hax} is supplied then the ## Voronoi diagram is drawn on the specified axis rather than in a new ## figure. ## ## The @var{options} argument, which must be a string or cell array of strings, ## contains options passed to the underlying qhull command. ## See the documentation for the Qhull library for details ## @url{http://www.qhull.org/html/qh-quick.htm#options}. ## ## If a single output argument is requested then the Voronoi diagram will be ## plotted and a graphics handle @var{h} to the plot is returned. ## [@var{vx}, @var{vy}] = voronoi (@dots{}) returns the Voronoi vertices ## instead of plotting the diagram. ## ## @example ## @group ## x = rand (10, 1); ## y = rand (size (x)); ## h = convhull (x, y); ## [vx, vy] = voronoi (x, y); ## plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g"); ## legend ("", "points", "hull"); ## @end group ## @end example ## ## @seealso{voronoin, delaunay, convhull} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## First Release: 20/08/2000 ## 2002-01-04 Paul Kienzle <pkienzle@users.sf.net> ## * limit the default graph to the input points rather than the whole diagram ## * provide example ## * use unique(x,"rows") rather than __unique_rows__ ## 2003-12-14 Rafael Laboissiere <rafael@laboissiere.net> ## Added optional fourth argument to pass options to the underlying ## qhull command function [vx, vy] = voronoi (varargin) if (nargin < 1) print_usage (); endif narg = 1; hax = NaN; if (isscalar (varargin{1}) && ishandle (varargin{1})) hax = varargin{1}; if (! isaxes (hax)) error ("voronoi: HAX argument must be an axes object"); endif narg++; endif if (nargin < 1 + narg || nargin > 3 + narg) print_usage (); endif x = varargin{narg++}; y = varargin{narg++}; opts = {}; if (narg <= nargin) if (iscell (varargin{narg})) opts = varargin(narg++); elseif (isnumeric (varargin{narg})) ## Accept, but ignore, the triangulation narg++; endif endif linespec = {"b"}; if (narg <= nargin && ischar (varargin{narg})) linespec = varargin(narg); endif if (length (x) != length (y)) error ("voronoi: X and Y must be vectors of the same length"); elseif (length (x) < 2) error ("voronoi: minimum of 2 points needed"); endif ## Add box to approximate rays to infinity. For Voronoi diagrams the ## box can (and should) be close to the points themselves. To make the ## job of finding the exterior edges it should be at least two times the ## delta below however xmax = max (x(:)); xmin = min (x(:)); ymax = max (y(:)); ymin = min (y(:)); xdelta = xmax - xmin; ydelta = ymax - ymin; scale = 2; xbox = [xmin - scale * xdelta; xmin - scale * xdelta; ... xmax + scale * xdelta; xmax + scale * xdelta]; ybox = [ymin - scale * ydelta; ymax + scale * ydelta; ... ymax + scale * ydelta; ymin - scale * ydelta]; [p, c, infi] = __voronoi__ ("voronoi", [[x(:) ; xbox(:)], [y(:); ybox(:)]], opts{:}); c = c(! infi).'; ## Delete null entries which cause problems in next cellfun function c(cellfun ("isempty", c)) = []; edges = cell2mat (cellfun (@(x) [x ; [x(end), x(1:end-1)]], c, "uniformoutput", false)); ## Identify the unique edges of the Voronoi diagram edges = sortrows (sort (edges).').'; edges = edges(:, [(edges(1, 1 :end - 1) != edges(1, 2 : end) | ... edges(2, 1 :end - 1) != edges(2, 2 : end)), true]); if (numel (x) > 2) ## Eliminate the edges of the diagram representing the box poutside = (1:rows (p)) ... (p(:, 1) < xmin - xdelta | p(:, 1) > xmax + xdelta | ... p(:, 2) < ymin - ydelta | p(:, 2) > ymax + ydelta); edgeoutside = ismember (edges(1, :), poutside) & ... ismember (edges(2, :), poutside); edges(:, edgeoutside) = []; else ## look for the edge between the two given points for edge = edges(1:2,:) if (det ([[[1;1],p(edge,1:2)];1,x(1),y(1)]) * det ([[[1;1],p(edge,1:2)];1,x(2),y(2)]) < 0) edges = edge; break; endif endfor ## Use larger plot limits to make it more likely single bisector is shown. xdelta = ydelta = max (xdelta, ydelta); endif ## Get points of the diagram Vvx = reshape (p(edges, 1), size (edges)); Vvy = reshape (p(edges, 2), size (edges)); if (nargout < 2) if (isnan (hax)) hax = gca (); endif h = plot (hax, Vvx, Vvy, linespec{:}, x, y, '+'); lim = [xmin, xmax, ymin, ymax]; axis (lim + 0.1 * [[-1, 1] * xdelta, [-1, 1] * ydelta]); if (nargout == 1) vx = h; endif else vx = Vvx; vy = Vvy; endif endfunction %!demo %! voronoi (rand (10,1), rand (10,1)); %!testif HAVE_QHULL %! phi = linspace (-pi, 3/4*pi, 8); %! [x,y] = pol2cart (phi, 1); %! [vx,vy] = voronoi (x,y); %! assert (vx(2,:), zeros (1, columns (vx)), eps); %! assert (vy(2,:), zeros (1, columns (vy)), eps); %!testif HAVE_QHULL %! ## Special case of just 2 points %! x = [0 1]; y = [1 0]; %! [vx, vy] = voronoi (x,y); %! assert (vx, [-0.7; 1.7], eps); %! assert (vy, [-0.7; 1.7], eps); %% Input validation tests %!error voronoi () %!error voronoi (ones (3,1)) %!error voronoi (ones (3,1), ones (3,1), "bogus1", "bogus2", "bogus3") %!error <HAX argument must be an axes object> voronoi (0, ones (3,1), ones (3,1)) %!error <X and Y must be vectors of the same length> voronoi (ones (3,1), ones (4,1)) %!error <minimum of 2 points needed> voronoi (2.5, 3.5)