Mercurial > hg > octave-nkf
view scripts/special-matrix/magic.m @ 20787:40ed9b46a800
new octave_value::string_value method with optional error message
* ov.h (octave_value::string_vector): New method.
ov-base.cc, ov-base.h (octave_base_value::string_vector):
New default method.
ov-str-mat.cc, ov-str-mat.h (octave_char_matrix_str::string_value):
New method.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 08 Oct 2015 16:43:22 -0400 |
parents | 2645f9ef8c88 |
children |
line wrap: on
line source
## Copyright (C) 1999-2015 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} magic (@var{n}) ## ## Create an @var{n}-by-@var{n} magic square. ## ## A magic square is an arrangement of the integers @code{1:n^2} such that the ## row sums, column sums, and diagonal sums are all equal to the same value. ## ## Note: @var{n} must be greater than 2 for the magic square to exist. ## @end deftypefn function A = magic (n) if (nargin != 1) print_usage (); endif if (n != fix (n) || n < 0 || n == 2) error ("magic: N must be a positive integer not equal to 2"); endif if (n == 0) A = []; elseif (mod (n, 2) == 1) shift = floor ((0:n*n-1)/n); c = mod ([1:n*n] - shift + (n-3)/2, n); r = mod ([n*n:-1:1] + 2*shift, n); A(c*n+r+1) = 1:n*n; A = reshape (A, n, n); elseif (mod (n, 4) == 0) A = reshape (1:n*n, n, n)'; I = [1:4:n, 4:4:n]; J = fliplr (I); A(I,I) = A(J,J); I = [2:4:n, 3:4:n]; J = fliplr (I); A(I,I) = A(J,J); elseif (mod (n, 4) == 2) m = n/2; A = magic (m); A = [A, A+2*m*m; A+3*m*m, A+m*m]; k = (m-1)/2; if (k > 1) I = 1:m; J = [2:k, n-k+2:n]; A([I,I+m],J) = A([I+m,I],J); endif I = [1:k, k+2:m]; A([I,I+m],1) = A([I+m,I],1); I = k + 1; A([I,I+m],I) = A([I+m,I],I); endif endfunction %!test %! for i = 3:30 %! A = magic (i); %! assert (norm(diff([sum(diag(A)),sum(diag(flipud(A))),sum(A),sum(A')])),0); %! endfor %!assert (isempty (magic (0))) %!assert (magic (1), 1) ## Test input validation %!error magic () %!error magic (1, 2) %!error <N must be a positive integer not equal to 2> magic (1.5) %!error <N must be a positive integer not equal to 2> magic (-1) %!error <N must be a positive integer not equal to 2> magic (2)