Mercurial > hg > octave-nkf
view scripts/statistics/distributions/logninv.m @ 19898:4197fc428c7d
maint: Update copyright notices for 2015.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 11 Feb 2015 14:19:08 -0500 |
parents | 8858d0ccfc93 |
children | 9fc020886ae9 |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} logninv (@var{x}) ## @deftypefnx {Function File} {} logninv (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the quantile (the inverse of the ## CDF) at @var{x} of the lognormal distribution with parameters ## @var{mu} and @var{sigma}. If a random variable follows this distribution, ## its logarithm is normally distributed with mean @var{mu} and standard ## deviation @var{sigma}. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the log normal distribution function inv = logninv (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (mu) || !isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("logninv: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("logninv: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) inv = NaN (size (x), "single"); else inv = NaN (size (x)); endif k = !(x >= 0) | !(x <= 1) | !(sigma > 0) | !(sigma < Inf); inv(k) = NaN; k = (x == 1) & (sigma > 0) & (sigma < Inf); inv(k) = Inf; k = (x >= 0) & (x < 1) & (sigma > 0) & (sigma < Inf); if (isscalar (mu) && isscalar (sigma)) inv(k) = exp (mu) .* exp (sigma .* stdnormal_inv (x(k))); else inv(k) = exp (mu(k)) .* exp (sigma(k) .* stdnormal_inv (x(k))); endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert (logninv (x, ones (1,5), ones (1,5)), [NaN 0 e Inf NaN]) %!assert (logninv (x, 1, ones (1,5)), [NaN 0 e Inf NaN]) %!assert (logninv (x, ones (1,5), 1), [NaN 0 e Inf NaN]) %!assert (logninv (x, [1 1 NaN 0 1], 1), [NaN 0 NaN Inf NaN]) %!assert (logninv (x, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (logninv ([x(1:2) NaN x(4:5)], 1, 2), [NaN 0 NaN Inf NaN]) %% Test class of input preserved %!assert (logninv ([x, NaN], 1, 1), [NaN 0 e Inf NaN NaN]) %!assert (logninv (single ([x, NaN]), 1, 1), single ([NaN 0 e Inf NaN NaN])) %!assert (logninv ([x, NaN], single (1), 1), single ([NaN 0 e Inf NaN NaN])) %!assert (logninv ([x, NaN], 1, single (1)), single ([NaN 0 e Inf NaN NaN])) %% Test input validation %!error logninv () %!error logninv (1,2) %!error logninv (1,2,3,4) %!error logninv (ones (3), ones (2), ones (2)) %!error logninv (ones (2), ones (3), ones (2)) %!error logninv (ones (2), ones (2), ones (3)) %!error logninv (i, 2, 2) %!error logninv (2, i, 2) %!error logninv (2, 2, i)