Mercurial > hg > octave-nkf
view scripts/statistics/distributions/unifrnd.m @ 19898:4197fc428c7d
maint: Update copyright notices for 2015.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 11 Feb 2015 14:19:08 -0500 |
parents | 446c46af4b42 |
children | 9fc020886ae9 |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} unifrnd (@var{a}, @var{b}) ## @deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, @var{r}) ## @deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, [@var{sz}]) ## Return a matrix of random samples from the uniform distribution on ## [@var{a}, @var{b}]. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the common size of ## @var{a} and @var{b}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the uniform distribution function rnd = unifrnd (a, b, varargin) if (nargin < 2) print_usage (); endif if (!isscalar (a) || !isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("unifrnd: A and B must be of common size or scalars"); endif endif if (iscomplex (a) || iscomplex (b)) error ("unifrnd: A and B must not be complex"); endif if (nargin == 2) sz = size (a); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("unifrnd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 3) if (any (cellfun (@(x) (!isscalar (x) || x < 0), varargin))) error ("unifrnd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (!isscalar (a) && !isequal (size (a), sz)) error ("unifrnd: A and B must be scalar or of size SZ"); endif if (isa (a, "single") || isa (b, "single")) cls = "single"; else cls = "double"; endif if (isscalar (a) && isscalar (b)) if ((-Inf < a) && (a < b) && (b < Inf)) rnd = a + (b - a) * rand (sz, cls); else rnd = NaN (sz, cls); endif else rnd = a + (b - a) .* rand (sz, cls); k = !(-Inf < a) | !(a < b) | !(b < Inf); rnd(k) = NaN; endif endfunction %!assert (size (unifrnd (1,2)), [1, 1]) %!assert (size (unifrnd (ones (2,1), 2)), [2, 1]) %!assert (size (unifrnd (ones (2,2), 2)), [2, 2]) %!assert (size (unifrnd (1, 2*ones (2,1))), [2, 1]) %!assert (size (unifrnd (1, 2*ones (2,2))), [2, 2]) %!assert (size (unifrnd (1, 2, 3)), [3, 3]) %!assert (size (unifrnd (1, 2, [4 1])), [4, 1]) %!assert (size (unifrnd (1, 2, 4, 1)), [4, 1]) %% Test class of input preserved %!assert (class (unifrnd (1, 2)), "double") %!assert (class (unifrnd (single (1), 2)), "single") %!assert (class (unifrnd (single ([1 1]), 2)), "single") %!assert (class (unifrnd (1, single (2))), "single") %!assert (class (unifrnd (1, single ([2 2]))), "single") %% Test input validation %!error unifrnd () %!error unifrnd (1) %!error unifrnd (ones (3), ones (2)) %!error unifrnd (ones (2), ones (3)) %!error unifrnd (i, 2) %!error unifrnd (2, i) %!error unifrnd (1,2, -1) %!error unifrnd (1,2, ones (2)) %!error unifrnd (1, 2, [2 -1 2]) %!error unifrnd (1,2, 1, ones (2)) %!error unifrnd (1,2, 1, -1) %!error unifrnd (ones (2,2), 2, 3) %!error unifrnd (ones (2,2), 2, [3, 2]) %!error unifrnd (ones (2,2), 2, 2, 3)