Mercurial > hg > octave-nkf
view scripts/general/rotdim.m @ 20727:4479d73eac72
Fix error when building annotation objects in gnuplot (bug #46035)
* __gnuplot_draw_figure__.m: ignore uicontextmenu objects.
author | Pantxo Diribarne <pantxo.diribarne@gmail.com> |
---|---|
date | Sat, 26 Sep 2015 11:26:18 +0200 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 2004-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} rotdim (@var{x}) ## @deftypefnx {Function File} {} rotdim (@var{x}, @var{n}) ## @deftypefnx {Function File} {} rotdim (@var{x}, @var{n}, @var{plane}) ## Return a copy of @var{x} with the elements rotated counterclockwise in ## 90-degree increments. ## ## The second argument @var{n} is optional, and specifies how many 90-degree ## rotations are to be applied (the default value is 1). Negative values of ## @var{n} rotate the matrix in a clockwise direction. ## ## The third argument is also optional and defines the plane of the rotation. ## If present, @var{plane} is a two element vector containing two different ## valid dimensions of the matrix. When @var{plane} is not given the first two ## non-singleton dimensions are used. ## ## For example, ## ## @example ## @group ## rotdim ([1, 2; 3, 4], -1, [1, 2]) ## @result{} 3 1 ## 4 2 ## @end group ## @end example ## ## @noindent ## rotates the given matrix clockwise by 90 degrees. The following are all ## equivalent statements: ## ## @example ## @group ## rotdim ([1, 2; 3, 4], -1, [1, 2]) ## rotdim ([1, 2; 3, 4], 3, [1, 2]) ## rotdim ([1, 2; 3, 4], 7, [1, 2]) ## @end group ## @end example ## @seealso{rot90, fliplr, flipud, flip} ## @end deftypefn function y = rotdim (x, n, plane) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin > 1 && ! isempty (n)) if (! isscalar (n) || ! isreal (n) || fix (n) != n) error ("rotdim: N must be a scalar integer"); endif else n = 1; endif nd = ndims (x); sz = size (x); if (nargin < 3) if (nd > 2) ## Find the first two non-singleton dimension. plane = []; dim = 0; while (dim < nd) dim += 1; if (sz (dim) != 1) plane = [plane, dim]; if (length (plane) == 2) break; endif endif endwhile if (length (plane) < 1) plane = [1, 2]; elseif (length (plane) < 2) plane = [1, plane]; endif else plane = [1, 2]; endif else if (! (isvector (plane) && length (plane) == 2 && all (plane == fix (plane)) && all (plane > 0) && all (plane < (nd + 1)) && plane(1) != plane(2))) error ("rotdim: PLANE must be a 2 element integer vector defining a valid PLANE"); endif endif n = rem (n, 4); if (n < 0) n += 4; endif if (n == 0) y = x; elseif (n == 2) y = flip (flip (x, plane(1)), plane(2)); elseif (n == 1 || n == 3) perm = 1:nd; perm(plane(1)) = plane(2); perm(plane(2)) = plane(1); y = permute (x, perm); if (n == 1) y = flip (y, min (plane)); else y = flip (y, max (plane)); endif else error ("rotdim: internal error!"); endif endfunction %!shared r, rr %! r = [1,2,3]; rr = [3,2,1]; %!assert (rotdim (r, 0), r) %!assert (rotdim (r, 1), rr') %!assert (rotdim (r, 2), rr) %!assert (rotdim (r, 3), r') %!assert (rotdim (r, 3), rotdim (r, -1)) %!assert (rotdim (r, 1), rotdim (r)) %!shared c, cr %! c = [1;2;3]; cr = [3;2;1]; %!assert (rotdim (c, 0), c) %!assert (rotdim (c, 1), c') %!assert (rotdim (c, 2), cr) %!assert (rotdim (c, 3), cr') %!assert (rotdim (c, 3), rotdim (c, -1)) %!assert (rotdim (c, 1), rotdim (c)) %!shared m %! m = [1,2;3,4]; %!assert (rotdim (m, 0), m) %!assert (rotdim (m, 1), [2,4;1,3]) %!assert (rotdim (m, 2), [4,3;2,1]) %!assert (rotdim (m, 3), [3,1;4,2]) %!assert (rotdim (m, 3), rotdim (m, -1)) %!assert (rotdim (m, 1), rotdim (m)) ## FIXME: We need tests for multidimensional arrays ## and different values of PLANE. %!error rotdim () %!error rotdim (1, 2, 3, 4)