Mercurial > hg > octave-nkf
view scripts/geometry/inpolygon.m @ 20727:4479d73eac72
Fix error when building annotation objects in gnuplot (bug #46035)
* __gnuplot_draw_figure__.m: ignore uicontextmenu objects.
author | Pantxo Diribarne <pantxo.diribarne@gmail.com> |
---|---|
date | Sat, 26 Sep 2015 11:26:18 +0200 |
parents | aa36fb998a4d |
children |
line wrap: on
line source
## Copyright (C) 2006-2015 Frederick (Rick) A Niles ## and Søren Hauberg ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{in} =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv}) ## @deftypefnx {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv}) ## ## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, return ## true if the points @code{(@var{x}, @var{y})} are inside (or on the boundary) ## of the polygon; Otherwise, return false. ## ## The input variables @var{x} and @var{y}, must have the same dimension. ## ## The optional output @var{on} returns true if the points are exactly on the ## polygon edge, and false otherwise. ## @seealso{delaunay} ## @end deftypefn ## Author: Frederick (Rick) A Niles <niles@rickniles.com> ## Created: 14 November 2006 ## Vectorized by Søren Hauberg <soren@hauberg.org> ## The method for determining if a point is in in a polygon is based on ## the algorithm shown on ## http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ ## and is credited to Randolph Franklin. function [in, on] = inpolygon (x, y, xv, yv) if (nargin != 4) print_usage (); endif if (! (isreal (x) && isreal (y) && ismatrix (y) && ismatrix (y) && size_equal (x, y))) error ("inpolygon: X and Y must be real matrices of the same size"); elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv) && size_equal (xv, yv))) error ("inpolygon: XV and YV must be real vectors of the same size"); endif npol = length (xv); in = on = false (size (x)); j = npol; for i = 1 : npol delta_xv = xv(j) - xv(i); delta_yv = yv(j) - yv(i); ## distance = [distance from (x,y) to edge] * length(edge) distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv; ## is y between the y-values of edge i,j AND (x,y) on the left of the edge? idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i))) & 0 < distance.*delta_yv); in(idx1) = ! in(idx1); ## Check if (x,y) are actually on the boundary of the polygon. idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i))) & ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i))) & (0 == distance | !delta_xv)); on(idx2) = true; j = i; endfor ## Matlab definition include both in polygon and on polygon points. in |= on; endfunction %!demo %! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ... %! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ... %! 0.05840 ]; %! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ... %! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ... %! 0.60628 ]; %! xa = [0:0.1:2.3]; %! ya = [0:0.1:1.4]; %! [x,y] = meshgrid (xa, ya); %! [in,on] = inpolygon (x, y, xv, yv); %! inside = in & !on; %! %! clf; %! plot (xv, yv); %! hold on; %! plot (x(inside), y(inside), "@g") %! plot (x(!in), y(!in), "@m"); %! plot (x(on), y(on), "@b"); %! hold off; %! disp ("Green points are inside polygon, magenta are outside,"); %! disp ("and blue are on boundary."); %!demo %! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ... %! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ... %! 0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ... %! 0.73295, 0.05840 ]; %! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ... %! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ... %! 0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ... %! 0.82096, 0.60628]; %! xa = [0:0.1:2.3]; %! ya = [0:0.1:1.4]; %! [x, y] = meshgrid (xa, ya); %! [in, on] = inpolygon (x, y, xv, yv); %! inside = in & !on; %! %! clf; %! plot (xv, yv); %! hold on; %! plot (x(inside), y(inside), "@g"); %! plot (x(!in), y(!in), "@m"); %! plot (x(on), y(on), "@b"); %! hold off; %! disp ("Green points are inside polygon, magenta are outside,"); %! disp ("and blue are on boundary."); %!test %! [in, on] = inpolygon ([1, 0, 2], [1, 0, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]); %! assert (in, [true, true, false]); %! assert (on, [true, false, false]); ## Test input validation %!error inpolygon () %!error inpolygon (1, 2) %!error inpolygon (1, 2, 3) %!error inpolygon (1, 2, 3, 4, 5) %!error <X and Y must be real matrices> inpolygon (1i, 1, [3, 4], [5, 6]) %!error <X and Y must be real matrices> inpolygon (1, {1}, [3, 4], [5, 6]) %!error <X and Y must be .* the same size> inpolygon (1, [1,2], [3, 4], [5, 6]) %!error <XV and YV must be real vectors> inpolygon (1, 1, [3i, 4], [5, 6]) %!error <XV and YV must be real vectors> inpolygon (1, 1, [3, 4], {5, 6}) %!error <XV and YV must .* the same size> inpolygon ([1,2], [3, 4], [5, 6], 1)