Mercurial > hg > octave-nkf
view liboctave/CNDArray.cc @ 14846:460a3c6d8bf1
maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
Example: func() => func ()
* dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc,
funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h,
CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc,
CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc,
Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h,
SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc,
SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h,
SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc,
dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc,
dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc,
fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc,
fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc,
file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h,
lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc,
oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c,
sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc,
tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m,
what.m, getarchdir.m, install.m, installed_packages.m, repackage.m,
unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m,
plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m,
__marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m,
trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc,
__dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc,
__lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc,
bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc,
dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc,
lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc,
regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc,
op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc,
op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc,
op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc,
op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc,
op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc,
op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc,
op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc,
data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc,
graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h,
ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h,
oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc,
ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc,
ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc,
ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc,
ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc,
pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc,
toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m,
getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m,
getStash.m, myStash.m, fntests.m: Use Octave coding convention for
cuddled parenthis in function calls with empty argument lists.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 08 Jul 2012 11:28:50 -0700 |
parents | 5bc9b9cb4362 |
children | 3d8ace26c5b4 |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2009 VZLU Prague, a.s. This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "CNDArray.h" #include "f77-fcn.h" #include "functor.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "MArray-defs.h" #include "mx-base.h" #include "mx-op-defs.h" #include "oct-fftw.h" #include "oct-locbuf.h" #include "bsxfun-defs.cc" ComplexNDArray::ComplexNDArray (const charNDArray& a) : MArray<Complex> (a.dims ()) { octave_idx_type n = a.numel (); for (octave_idx_type i = 0; i < n; i++) xelem (i) = static_cast<unsigned char> (a(i)); } #if defined (HAVE_FFTW) ComplexNDArray ComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray ComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray ComplexNDArray::fourier2d (void) const { dim_vector dv = dims (); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const Complex *in = fortran_vec (); ComplexNDArray retval (dv); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel () / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray ComplexNDArray::ifourier2d (void) const { dim_vector dv = dims (); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const Complex *in = fortran_vec (); ComplexNDArray retval (dv); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel () / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray ComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } ComplexNDArray ComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else extern "C" { // Note that the original complex fft routines were not written for // double complex arguments. They have been modified by adding an // implicit double precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (zffti, ZFFTI) (const octave_idx_type&, Complex*); F77_RET_T F77_FUNC (zfftf, ZFFTF) (const octave_idx_type&, Complex*, Complex*); F77_RET_T F77_FUNC (zfftb, ZFFTB) (const octave_idx_type&, Complex*, Complex*); } ComplexNDArray ComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } ComplexNDArray ComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<double> (npts); } } return retval; } ComplexNDArray ComplexNDArray::fourier2d (void) const { dim_vector dv = dims (); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (dim_vector (npts, 1)); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval((l + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } ComplexNDArray ComplexNDArray::ifourier2d (void) const { dim_vector dv = dims (); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (dim_vector (npts, 1)); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval((l + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv2(i); } return retval; } ComplexNDArray ComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (dim_vector (npts, 1)); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval((l + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } ComplexNDArray ComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (dim_vector (nn, 1)); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (dim_vector (npts, 1)); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval((l + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray ComplexNDArray::operator ! (void) const { if (any_element_is_nan ()) gripe_nan_to_logical_conversion (); return do_mx_unary_op<bool, Complex> (*this, mx_inline_not); } // FIXME -- this is not quite the right thing. bool ComplexNDArray::any_element_is_nan (void) const { return do_mx_check<Complex> (*this, mx_inline_any_nan); } bool ComplexNDArray::any_element_is_inf_or_nan (void) const { return ! do_mx_check<Complex> (*this, mx_inline_all_finite); } // Return true if no elements have imaginary components. bool ComplexNDArray::all_elements_are_real (void) const { return do_mx_check<Complex> (*this, mx_inline_all_real); } // Return nonzero if any element of CM has a non-integer real or // imaginary part. Also extract the largest and smallest (real or // imaginary) values and return them in MAX_VAL and MIN_VAL. bool ComplexNDArray::all_integers (double& max_val, double& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { Complex val = elem (0); double r_val = std::real (val); double i_val = std::imag (val); max_val = r_val; min_val = r_val; if (i_val > max_val) max_val = i_val; if (i_val < max_val) min_val = i_val; } else return false; for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); double r_val = std::real (val); double i_val = std::imag (val); if (r_val > max_val) max_val = r_val; if (i_val > max_val) max_val = i_val; if (r_val < min_val) min_val = r_val; if (i_val < min_val) min_val = i_val; if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) return false; } return true; } bool ComplexNDArray::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); double r_val = std::real (val); double i_val = std::imag (val); if ((! (xisnan (r_val) || xisinf (r_val)) && fabs (r_val) > FLT_MAX) || (! (xisnan (i_val) || xisinf (i_val)) && fabs (i_val) > FLT_MAX)) return true; } return false; } boolNDArray ComplexNDArray::all (int dim) const { return do_mx_red_op<bool, Complex> (*this, dim, mx_inline_all); } boolNDArray ComplexNDArray::any (int dim) const { return do_mx_red_op<bool, Complex> (*this, dim, mx_inline_any); } ComplexNDArray ComplexNDArray::cumprod (int dim) const { return do_mx_cum_op<Complex, Complex> (*this, dim, mx_inline_cumprod); } ComplexNDArray ComplexNDArray::cumsum (int dim) const { return do_mx_cum_op<Complex, Complex> (*this, dim, mx_inline_cumsum); } ComplexNDArray ComplexNDArray::prod (int dim) const { return do_mx_red_op<Complex, Complex> (*this, dim, mx_inline_prod); } ComplexNDArray ComplexNDArray::sum (int dim) const { return do_mx_red_op<Complex, Complex> (*this, dim, mx_inline_sum); } ComplexNDArray ComplexNDArray::xsum (int dim) const { return do_mx_red_op<Complex, Complex> (*this, dim, mx_inline_xsum); } ComplexNDArray ComplexNDArray::sumsq (int dim) const { return do_mx_red_op<double, Complex> (*this, dim, mx_inline_sumsq); } ComplexNDArray ComplexNDArray::diff (octave_idx_type order, int dim) const { return do_mx_diff_op<Complex> (*this, dim, order, mx_inline_diff); } ComplexNDArray ComplexNDArray::concat (const ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } ComplexNDArray ComplexNDArray::concat (const NDArray& rb, const Array<octave_idx_type>& ra_idx) { ComplexNDArray tmp (rb); if (rb.numel () > 0) insert (tmp, ra_idx); return *this; } ComplexNDArray concat (NDArray& ra, ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { ComplexNDArray retval (ra); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } static const Complex Complex_NaN_result (octave_NaN, octave_NaN); ComplexNDArray ComplexNDArray::max (int dim) const { return do_mx_minmax_op<Complex> (*this, dim, mx_inline_max); } ComplexNDArray ComplexNDArray::max (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_minmax_op<Complex> (*this, idx_arg, dim, mx_inline_max); } ComplexNDArray ComplexNDArray::min (int dim) const { return do_mx_minmax_op<Complex> (*this, dim, mx_inline_min); } ComplexNDArray ComplexNDArray::min (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_minmax_op<Complex> (*this, idx_arg, dim, mx_inline_min); } ComplexNDArray ComplexNDArray::cummax (int dim) const { return do_mx_cumminmax_op<Complex> (*this, dim, mx_inline_cummax); } ComplexNDArray ComplexNDArray::cummax (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_cumminmax_op<Complex> (*this, idx_arg, dim, mx_inline_cummax); } ComplexNDArray ComplexNDArray::cummin (int dim) const { return do_mx_cumminmax_op<Complex> (*this, dim, mx_inline_cummin); } ComplexNDArray ComplexNDArray::cummin (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_cumminmax_op<Complex> (*this, idx_arg, dim, mx_inline_cummin); } NDArray ComplexNDArray::abs (void) const { return do_mx_unary_map<double, Complex, std::abs> (*this); } boolNDArray ComplexNDArray::isnan (void) const { return do_mx_unary_map<bool, Complex, xisnan> (*this); } boolNDArray ComplexNDArray::isinf (void) const { return do_mx_unary_map<bool, Complex, xisinf> (*this); } boolNDArray ComplexNDArray::isfinite (void) const { return do_mx_unary_map<bool, Complex, xfinite> (*this); } ComplexNDArray conj (const ComplexNDArray& a) { return do_mx_unary_map<Complex, Complex, std::conj<double> > (a); } ComplexNDArray& ComplexNDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) { dim_vector a_dv = a.dims (); int n = a_dv.length (); if (n == dimensions.length ()) { Array<octave_idx_type> a_ra_idx (dim_vector (a_dv.length (), 1), 0); a_ra_idx.elem (0) = r; a_ra_idx.elem (1) = c; for (int i = 0; i < n; i++) { if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) { (*current_liboctave_error_handler) ("Array<T>::insert: range error for insert"); return *this; } } a_ra_idx.elem (0) = 0; a_ra_idx.elem (1) = 0; octave_idx_type n_elt = a.numel (); // IS make_unique () NECCESSARY HERE?? for (octave_idx_type i = 0; i < n_elt; i++) { Array<octave_idx_type> ra_idx = a_ra_idx; ra_idx.elem (0) = a_ra_idx (0) + r; ra_idx.elem (1) = a_ra_idx (1) + c; elem (ra_idx) = a.elem (a_ra_idx); increment_index (a_ra_idx, a_dv); } } else (*current_liboctave_error_handler) ("Array<T>::insert: invalid indexing operation"); return *this; } ComplexNDArray& ComplexNDArray::insert (const ComplexNDArray& a, octave_idx_type r, octave_idx_type c) { Array<Complex>::insert (a, r, c); return *this; } ComplexNDArray& ComplexNDArray::insert (const ComplexNDArray& a, const Array<octave_idx_type>& ra_idx) { Array<Complex>::insert (a, ra_idx); return *this; } ComplexMatrix ComplexNDArray::matrix_value (void) const { ComplexMatrix retval; if (ndims () == 2) retval = ComplexMatrix (Array<Complex> (*this)); else (*current_liboctave_error_handler) ("invalid conversion of ComplexNDArray to ComplexMatrix"); return retval; } void ComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type ComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } ComplexNDArray ComplexNDArray::diag (octave_idx_type k) const { return MArray<Complex>::diag (k); } ComplexNDArray ComplexNDArray::diag (octave_idx_type m, octave_idx_type n) const { return MArray<Complex>::diag (m, n); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const ComplexNDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_complex (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, ComplexNDArray& a) { octave_idx_type nel = a.nelem (); if (nel > 0) { Complex tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_value<Complex> (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } MINMAX_FCNS (ComplexNDArray, Complex) NDS_CMP_OPS (ComplexNDArray, Complex) NDS_BOOL_OPS (ComplexNDArray, Complex) SND_CMP_OPS (Complex, ComplexNDArray) SND_BOOL_OPS (Complex, ComplexNDArray) NDND_CMP_OPS (ComplexNDArray, ComplexNDArray) NDND_BOOL_OPS (ComplexNDArray, ComplexNDArray) ComplexNDArray& operator *= (ComplexNDArray& a, double s) { if (a.is_shared ()) a = a * s; else do_ms_inplace_op<Complex, double> (a, s, mx_inline_mul2); return a; } ComplexNDArray& operator /= (ComplexNDArray& a, double s) { if (a.is_shared ()) return a = a / s; else do_ms_inplace_op<Complex, double> (a, s, mx_inline_div2); return a; } BSXFUN_STDOP_DEFS_MXLOOP (ComplexNDArray) BSXFUN_STDREL_DEFS_MXLOOP (ComplexNDArray) BSXFUN_OP_DEF_MXLOOP (pow, ComplexNDArray, mx_inline_pow)