Mercurial > hg > octave-nkf
view src/ov-intx.h @ 14846:460a3c6d8bf1
maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
Example: func() => func ()
* dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc,
funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h,
CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc,
CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc,
Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h,
SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc,
SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h,
SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc,
dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc,
dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc,
fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc,
fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc,
file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h,
lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc,
oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c,
sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc,
tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m,
what.m, getarchdir.m, install.m, installed_packages.m, repackage.m,
unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m,
plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m,
__marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m,
trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc,
__dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc,
__lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc,
bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc,
dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc,
lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc,
regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc,
op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc,
op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc,
op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc,
op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc,
op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc,
op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc,
op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc,
data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc,
graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h,
ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h,
oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc,
ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc,
ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc,
ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc,
ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc,
pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc,
toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m,
getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m,
getStash.m, myStash.m, fntests.m: Use Octave coding convention for
cuddled parenthis in function calls with empty argument lists.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 08 Jul 2012 11:28:50 -0700 |
parents | 29aabe9b37a2 |
children |
line wrap: on
line source
/* Copyright (C) 2004-2012 John W. Eaton Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #include <cstdlib> #include <iosfwd> #include <string> #include "mx-base.h" #include "oct-alloc.h" #include "str-vec.h" #include "error.h" #include "oct-stream.h" #include "ov-base.h" #include "ov-base-int.h" #include "ov-typeinfo.h" #include "gripes.h" #include "ov-re-mat.h" #include "ov-scalar.h" class OCTINTERP_API OCTAVE_VALUE_INT_MATRIX_T : public octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > { public: OCTAVE_VALUE_INT_MATRIX_T (void) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > () { } OCTAVE_VALUE_INT_MATRIX_T (const intNDArray<OCTAVE_INT_T>& nda) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > (nda) { } OCTAVE_VALUE_INT_MATRIX_T (const Array<OCTAVE_INT_T>& nda) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > (intNDArray<OCTAVE_INT_T> (nda)) { } ~OCTAVE_VALUE_INT_MATRIX_T (void) { } octave_base_value *clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (*this); } octave_base_value *empty_clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (); } bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; } bool is_integer_type (void) const { return true; } builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; } public: int8NDArray int8_array_value (void) const { return int8NDArray (matrix); } int16NDArray int16_array_value (void) const { return int16NDArray (matrix); } int32NDArray int32_array_value (void) const { return int32NDArray (matrix); } int64NDArray int64_array_value (void) const { return int64NDArray (matrix); } uint8NDArray uint8_array_value (void) const { return uint8NDArray (matrix); } uint16NDArray uint16_array_value (void) const { return uint16NDArray (matrix); } uint32NDArray uint32_array_value (void) const { return uint32NDArray (matrix); } uint64NDArray uint64_array_value (void) const { return uint64NDArray (matrix); } double double_value (bool = false) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-to-scalar", type_name (), "real scalar"); retval = matrix(0).double_value (); } else gripe_invalid_conversion (type_name (), "real scalar"); return retval; } float float_value (bool = false) const { float retval = lo_ieee_float_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-to-scalar", type_name (), "real scalar"); retval = matrix(0).float_value (); } else gripe_invalid_conversion (type_name (), "real scalar"); return retval; } double scalar_value (bool = false) const { return double_value (); } float float_scalar_value (bool = false) const { return float_value (); } Matrix matrix_value (bool = false) const { Matrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to Matrix", type_name ().c_str ()); else { retval = Matrix (dv(0), dv(1)); double *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).double_value (); } return retval; } FloatMatrix float_matrix_value (bool = false) const { FloatMatrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ()); else { retval = FloatMatrix (dv(0), dv(1)); float *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).float_value (); } return retval; } ComplexMatrix complex_matrix_value (bool = false) const { ComplexMatrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to Matrix", type_name ().c_str ()); else { retval = ComplexMatrix (dv(0), dv(1)); Complex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = Complex (matrix(i).double_value ()); } return retval; } FloatComplexMatrix float_complex_matrix_value (bool = false) const { FloatComplexMatrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ()); else { retval = FloatComplexMatrix (dv(0), dv(1)); FloatComplex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = FloatComplex (matrix(i).float_value ()); } return retval; } NDArray array_value (bool = false) const { NDArray retval (matrix.dims ()); double *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).double_value (); return retval; } FloatNDArray float_array_value (bool = false) const { FloatNDArray retval (matrix.dims ()); float *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).float_value (); return retval; } ComplexNDArray complex_array_value (bool = false) const { ComplexNDArray retval (matrix.dims ()); Complex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = Complex (matrix(i).double_value ()); return retval; } FloatComplexNDArray float_complex_array_value (bool = false) const { FloatComplexNDArray retval (matrix.dims ()); FloatComplex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = FloatComplex (matrix(i).float_value ()); return retval; } boolNDArray bool_array_value (bool warn = false) const { boolNDArray retval (dims ()); octave_idx_type nel = numel (); if (warn && matrix.any_element_not_one_or_zero ()) gripe_logical_conversion (); bool *vec = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).bool_value (); return retval; } charNDArray char_array_value (bool = false) const { charNDArray retval (dims ()); octave_idx_type nel = numel (); char *vec = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).char_value (); return retval; } // Use matrix_ref here to clear index cache. void increment (void) { matrix_ref () += OCTAVE_INT_T (1); } void decrement (void) { matrix_ref () -= OCTAVE_INT_T (1); } void changesign (void) { matrix_ref ().changesign (); } idx_vector index_vector (void) const { return idx_cache ? *idx_cache : set_idx_cache (idx_vector (matrix)); } int write (octave_stream& os, int block_size, oct_data_conv::data_type output_type, int skip, oct_mach_info::float_format flt_fmt) const { return os.write (matrix, block_size, output_type, skip, flt_fmt); } // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return matrix.mex_get_data (); } mxArray *as_mxArray (void) const { mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, dims (), mxREAL); OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ()); mwSize nel = numel (); const OCTAVE_INT_T *p = matrix.data (); for (mwIndex i = 0; i < nel; i++) pr[i] = p[i].value (); return retval; } octave_value map (unary_mapper_t umap) const { switch (umap) { case umap_abs: return matrix.abs (); case umap_signum: return matrix.signum (); case umap_ceil: case umap_conj: case umap_fix: case umap_floor: case umap_real: case umap_round: return matrix; case umap_imag: return intNDArray<OCTAVE_INT_T> (matrix.dims (), OCTAVE_INT_T ()); case umap_isnan: case umap_isna: case umap_isinf: return boolNDArray (matrix.dims (), false); case umap_finite: return boolNDArray (matrix.dims (), true); default: { octave_matrix m (array_value ()); return m.map (umap); } } } private: DECLARE_OCTAVE_ALLOCATOR DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA }; class OCTINTERP_API OCTAVE_VALUE_INT_SCALAR_T : public octave_base_int_scalar<OCTAVE_INT_T> { public: OCTAVE_VALUE_INT_SCALAR_T (void) : octave_base_int_scalar<OCTAVE_INT_T> () { } OCTAVE_VALUE_INT_SCALAR_T (const OCTAVE_INT_T& nda) : octave_base_int_scalar<OCTAVE_INT_T> (nda) { } ~OCTAVE_VALUE_INT_SCALAR_T (void) { } octave_base_value *clone (void) const { return new OCTAVE_VALUE_INT_SCALAR_T (*this); } octave_base_value *empty_clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (); } octave_value do_index_op (const octave_value_list& idx, bool resize_ok = false) { // FIXME -- this doesn't solve the problem of // // a = 1; a([1,1], [1,1], [1,1]) // // and similar constructions. Hmm... // FIXME -- using this constructor avoids narrowing the // 1x1 matrix back to a scalar value. Need a better solution // to this problem. octave_value tmp (new OCTAVE_VALUE_INT_MATRIX_T (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION ())); return tmp.do_index_op (idx, resize_ok); } bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; } bool is_integer_type (void) const { return true; } builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; } public: octave_int8 int8_scalar_value (void) const { return octave_int8 (scalar); } octave_int16 int16_scalar_value (void) const { return octave_int16 (scalar); } octave_int32 int32_scalar_value (void) const { return octave_int32 (scalar); } octave_int64 int64_scalar_value (void) const { return octave_int64 (scalar); } octave_uint8 uint8_scalar_value (void) const { return octave_uint8 (scalar); } octave_uint16 uint16_scalar_value (void) const { return octave_uint16 (scalar); } octave_uint32 uint32_scalar_value (void) const { return octave_uint32 (scalar); } octave_uint64 uint64_scalar_value (void) const { return octave_uint64 (scalar); } int8NDArray int8_array_value (void) const { return int8NDArray (dim_vector (1, 1), int8_scalar_value ()); } int16NDArray int16_array_value (void) const { return int16NDArray (dim_vector (1, 1), int16_scalar_value ()); } int32NDArray int32_array_value (void) const { return int32NDArray (dim_vector (1, 1), int32_scalar_value ()); } int64NDArray int64_array_value (void) const { return int64NDArray (dim_vector (1, 1), int64_scalar_value ()); } uint8NDArray uint8_array_value (void) const { return uint8NDArray (dim_vector (1, 1), uint8_scalar_value ()); } uint16NDArray uint16_array_value (void) const { return uint16NDArray (dim_vector (1, 1), uint16_scalar_value ()); } uint32NDArray uint32_array_value (void) const { return uint32NDArray (dim_vector (1, 1), uint32_scalar_value ()); } uint64NDArray uint64_array_value (void) const { return uint64NDArray (dim_vector (1, 1), uint64_scalar_value ()); } octave_value resize (const dim_vector& dv, bool fill = false) const { if (fill) { intNDArray<OCTAVE_INT_T> retval (dv, 0); if (dv.numel ()) retval(0) = scalar; return retval; } else { intNDArray<OCTAVE_INT_T> retval (dv); if (dv.numel ()) retval(0) = scalar; return retval; } } double double_value (bool = false) const { return scalar.double_value (); } float float_value (bool = false) const { return scalar.float_value (); } double scalar_value (bool = false) const { return scalar.double_value (); } float float_scalar_value (bool = false) const { return scalar.float_value (); } Matrix matrix_value (bool = false) const { Matrix retval (1, 1); retval(0,0) = scalar.double_value (); return retval; } FloatMatrix float_matrix_value (bool = false) const { FloatMatrix retval (1, 1); retval(0,0) = scalar.float_value (); return retval; } ComplexMatrix complex_matrix_value (bool = false) const { ComplexMatrix retval (1, 1); retval(0,0) = Complex (scalar.double_value ()); return retval; } FloatComplexMatrix float_complex_matrix_value (bool = false) const { FloatComplexMatrix retval (1, 1); retval(0,0) = FloatComplex (scalar.float_value ()); return retval; } NDArray array_value (bool = false) const { NDArray retval (dim_vector (1, 1)); retval(0) = scalar.double_value (); return retval; } FloatNDArray float_array_value (bool = false) const { FloatNDArray retval (dim_vector (1, 1)); retval(0) = scalar.float_value (); return retval; } ComplexNDArray complex_array_value (bool = false) const { ComplexNDArray retval (dim_vector (1, 1)); retval(0) = FloatComplex (scalar.double_value ()); return retval; } FloatComplexNDArray float_complex_array_value (bool = false) const { FloatComplexNDArray retval (dim_vector (1, 1)); retval(0) = FloatComplex (scalar.float_value ()); return retval; } bool bool_value (bool warn = false) const { if (warn && scalar != 0.0 && scalar != 1.0) gripe_logical_conversion (); return scalar.bool_value (); } boolNDArray bool_array_value (bool warn = false) const { boolNDArray retval (dim_vector (1, 1)); if (warn && scalar != 0.0 && scalar != 1.0) gripe_logical_conversion (); retval(0) = scalar.bool_value (); return retval; } charNDArray char_array_value (bool = false) const { charNDArray retval (dim_vector (1, 1)); retval(0) = scalar.char_value (); return retval; } void increment (void) { scalar += OCTAVE_INT_T (1); } void decrement (void) { scalar -= OCTAVE_INT_T (1); } idx_vector index_vector (void) const { return idx_vector (scalar); } int write (octave_stream& os, int block_size, oct_data_conv::data_type output_type, octave_idx_type skip, oct_mach_info::float_format flt_fmt) const { return os.write (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION (), block_size, output_type, skip, flt_fmt); } // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return scalar.mex_get_data (); } mxArray *as_mxArray (void) const { mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, 1, 1, mxREAL); OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ()); pr[0] = scalar.value (); return retval; } octave_value map (unary_mapper_t umap) const { switch (umap) { case umap_abs: return scalar.abs (); case umap_signum: return scalar.signum (); case umap_ceil: case umap_conj: case umap_fix: case umap_floor: case umap_real: case umap_round: return scalar; case umap_imag: return OCTAVE_INT_T (); case umap_isnan: case umap_isna: case umap_isinf: return false; case umap_finite: return true; default: { octave_scalar m (scalar_value ()); return m.map (umap); } } } private: DECLARE_OCTAVE_ALLOCATOR DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA };