Mercurial > hg > octave-nkf
view scripts/sparse/bicgstab.m @ 9021:47152db528ff
ChangeLog fix
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 25 Mar 2009 22:05:44 -0400 |
parents | eb63fbe60fab |
children | 2b35cb600d50 |
line wrap: on
line source
## Copyright (C) 2008, 2009 Radek Salac ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} bicgstab (@var{A}, @var{b}) ## @deftypefnx {Function File} {} bicgstab (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) ## This procedure attempts to solve a system of linear equations A*x = b for x. ## The @var{A} must be square, symmetric and positive definite real matrix N*N. ## The @var{b} must be a one column vector with a length of N. ## The @var{tol} specifies the tolerance of the method, the default value is 1e-6. ## The @var{maxit} specifies the maximum number of iterations, the default value is min(20,N). ## The @var{M1} specifies a preconditioner, can also be a function handler which returns M\X. ## The @var{M2} combined with @var{M1} defines preconditioner as preconditioner=M1*M2. ## The @var{x0} is the initial guess, the default value is zeros(N,1). ## ## The value @var{x} is a computed result of this procedure. ## The value @var{flag} can be 0 when we reach tolerance in @var{maxit} iterations, 1 when ## we don't reach tolerance in @var{maxit} iterations and 3 when the procedure stagnates. ## The value @var{relres} is a relative residual - norm(b-A*x)/norm(b). ## The value @var{iter} is an iteration number in which x was computed. ## The value @var{resvec} is a vector of @var{relres} for each iteration. ## ## @end deftypefn function [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit, M1, M2, x0) if (nargin < 2 || nargin > 7 || nargout > 5) print_usage (); elseif (!isnumeric (A) || rows (A) != columns (A)) error ("bicgstab: the first argument must be a n-by-n matrix"); elseif (!isvector (b)) error ("bicgstab: b must be a vector"); elseif (!any (b)) error ("bicgstab: b shuldn't be a vector of zeros"); elseif (rows (A) != rows (b)) error ("bicgstab: the first and second argument must have the same number of rows"); elseif (nargin > 2 && !isscalar (tol)) error ("bicgstab: tol must be a scalar"); elseif (nargin > 3 && !isscalar (maxit)) error ("bicgstab: maxit must be a scalar"); elseif (nargin > 4 && ismatrix (M1) && (rows (M1) != rows (A) || columns (M1) != columns (A))) error ("bicgstab: M1 must have the same number of rows and columns as A"); elseif (nargin > 5 && (!ismatrix (M2) || rows (M2) != rows (A) || columns (M2) != columns (A))) error ("bicgstab: M2 must have the same number of rows and columns as A"); elseif (nargin > 6 && !isvector (x0)) error ("bicgstab: x0 must be a vector"); elseif (nargin > 6 && rows (x0) != rows (b)) error ("bicgstab: x0 must have the same number of rows as b"); endif ## Default tolerance. if (nargin < 3) tol = 1e-6; endif ## Default maximum number of iteration. if (nargin < 4) maxit = min (rows (b), 20); endif ## Left preconditioner. if (nargin == 5) precon = M1; elseif (nargin > 5) if (isparse(M1) && issparse(M2)) precon = @(x) M1 * (M2 * x); else precon = M1 * M2; endif endif if (nargin > 4 && isnumeric (precon)) ## Precon can by also function. if (det (precon) != 0) ## We can compute inverse preconditioner and use quicker algorithm. precon = inv (precon); else error ("bicgstab: preconditioner is ill conditioned"); endif if (isinf (cond (precon))); ## We must make test if preconditioner isn't ill conditioned. error ("bicgstab: preconditioner is ill conditioned"); endif endif ## specifies initial estimate x0 if (nargin < 7) x = zeros (rows (b), 1); else x = x0; endif norm_b = norm (b); res = b - A*x; rr = res; ## Vector of the residual norms for each iteration. resvec = [norm(res)]; ## Default behaviour we don't reach tolerance tol within maxit iterations. flag = 1; for iter = 1:maxit rho_1 = res' * rr; if (iter == 1) p = res; else beta = (rho_1 / rho_2) * (alpha / omega); p = res + beta * (p - omega * v); endif if (nargin > 4 && isnumeric (precon)) phat = precon * p; elseif (nargin > 4) ## Our preconditioner is a function. phat = feval (precon, p); else phat = p; endif v = A * phat; alpha = rho_1 / (rr' * v); s = res - alpha * v; if (nargin > 4 && isnumeric (precon)) shat = precon * s; elseif (nargin > 4) ## Our preconditioner is a function. shat = feval (precon, s); else shat = s; endif t = A * shat; omega = (t' * s) / (t' * t); x = x + alpha * phat + omega * shat; res = s - omega * t; rho_2 = rho_1; relres = norm (res) / norm_b; resvec = [resvec; relres]; if (relres <= tol) ## We reach tolerance tol within maxit iterations. flag = 0; break; elseif (resvec (end) == resvec (end - 1)) ## The method stagnates. flag = 3; break; endif endfor endfunction %!demo %! % Solve system of A*x=b %! A = [5 -1 3;-1 2 -2;3 -2 3] %! b = [7;-1;4] %! [x, flag, relres, iter, resvec] = bicgstab(A, b)