Mercurial > hg > octave-nkf
view scripts/general/sortrows.m @ 18206:48dafd739840 stable
cov.m: Document intentional Matlab incompatibility (bug #40751).
cov.m: Document intentional Matlab incompatibility (bug #40751).
author | Rik <rik@octave.org> |
---|---|
date | Fri, 03 Jan 2014 12:36:17 -0800 |
parents | d63878346099 |
children | 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2000-2013 Daniel Calvelo ## Copyright (C) 2009 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}) ## @deftypefnx {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c}) ## Sort the rows of the matrix @var{A} according to the order of the ## columns specified in @var{c}. If @var{c} is omitted, a ## lexicographical sort is used. By default ascending order is used ## however if elements of @var{c} are negative then the corresponding ## column is sorted in descending order. ## @seealso{sort} ## @end deftypefn ## Author: Daniel Calvelo, Paul Kienzle ## Adapted-by: jwe function [s, i] = sortrows (A, c) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin == 2) if (! (isnumeric (c) && isvector (c))) error ("sortrows: C must be a numeric vector"); elseif (any (c == 0) || any (abs (c) > columns (A))) error ("sortrows: all elements of C must be in the range [1, columns (A)]"); endif endif default_mode = "ascend"; reverse_mode = "descend"; if (issparse (A)) ## FIXME: Eliminate this case once __sort_rows_idx__ is fixed to ## handle sparse matrices. if (nargin == 1) i = sort_rows_idx_generic (default_mode, reverse_mode, A); else i = sort_rows_idx_generic (default_mode, reverse_mode, A, c); endif elseif (nargin == 1) i = __sort_rows_idx__ (A, default_mode); elseif (all (c > 0)) i = __sort_rows_idx__ (A(:,c), default_mode); elseif (all (c < 0)) i = __sort_rows_idx__ (A(:,-c), reverse_mode); else ## Otherwise, fall back to the old algorithm. i = sort_rows_idx_generic (default_mode, reverse_mode, A, c); endif ## Only bother to compute s if needed. if (isargout (1)) s = A(i,:); endif endfunction function i = sort_rows_idx_generic (default_mode, reverse_mode, m, c) if (nargin == 3) indices = [1:columns(m)]'; mode(1:columns(m)) = {default_mode}; else for j = 1:length (c); if (c(j) < 0) mode{j} = reverse_mode; else mode{j} = default_mode; endif endfor indices = abs (c(:)); endif ## Since sort is 'stable' the order of identical elements will be ## preserved, so by traversing the sort indices in reverse order we ## will make sure that identical elements in index i are subsorted by ## index j. indices = flipud (indices); mode = flipud (mode'); i = [1:rows(m)]'; for j = 1:length (indices); [~, idx] = sort (m(i, indices(j)), mode{j}); i = i(idx); endfor endfunction %!test %! m = [1, 1; 1, 2; 3, 6; 2, 7]; %! c = [1, -2]; %! [x, idx] = sortrows (m, c); %! [sx, sidx] = sortrows (sparse (m), c); %! assert (x, [1, 2; 1, 1; 2, 7; 3, 6]); %! assert (idx, [2; 1; 4; 3]); %! assert (issparse (sx)); %! assert (x, full (sx)); %! assert (idx, sidx); %!test %! m = [1, 0, 0, 4]; %! c = 1; %! [x, idx] = sortrows (m, c); %! [sx, sidx] = sortrows (sparse (m), c); %! assert (x, m); %! assert (idx, 1); %! assert (issparse (sx)); %! assert (x, full (sx)); %! assert (idx, sidx); %% Test input validation %!error sortrows () %!error sortrows (1, 2, 3) %!error sortrows (1, "ascend") %!error sortrows (1, ones (2,2)) %!error sortrows (1, 0) %!error sortrows (1, 2)