Mercurial > hg > octave-nkf
view libinterp/octave-value/ov-cx-sparse.cc @ 18718:51a0d1c1023c stable
listdlg.m: return Octave value rather than Java int object.(bug #41931).
Make parameter list case-insensitive.
Return empty matrix rather than empty cell list on failure.
* listdlg.m: Use for loop to index into java array to get octave value.
Use strcmpi to parse input options. Correctly return an empty matrix
rather than empty list if dialog fails.
author | Philip Nienhuis <prnienhuis@users.sf.net> |
---|---|
date | Sat, 22 Mar 2014 16:04:32 +0100 |
parents | 175b392e91fe |
children | 6a71e5030df5 |
line wrap: on
line source
/* Copyright (C) 2004-2013 David Bateman Copyright (C) 1998-2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include <limits> #include <vector> #include "lo-specfun.h" #include "lo-mappers.h" #include "oct-locbuf.h" #include "mxarray.h" #include "ov-base.h" #include "ov-scalar.h" #include "ov-complex.h" #include "gripes.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-base-sparse.h" #include "ov-base-sparse.cc" #include "ov-bool-sparse.h" template class OCTINTERP_API octave_base_sparse<SparseComplexMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_sparse_complex_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_complex_matrix, "sparse complex matrix", "double"); octave_base_value * octave_sparse_complex_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (Vsparse_auto_mutate) { int nr = matrix.rows (); int nc = matrix.cols (); // Don't use numel, since it can overflow for very large matrices // Note that for the tests on matrix size, they become approximative // since they involves a cast to double to avoid issues of overflow if (matrix.rows () == 1 && matrix.cols () == 1) { // Const copy of the matrix, so the right version of () operator used const SparseComplexMatrix tmp (matrix); Complex c = tmp (0, 0); if (std::imag (c) == 0.0) retval = new octave_scalar (std::real (c)); else retval = new octave_complex (c); } else if (nr == 0 || nc == 0) retval = new octave_matrix (Matrix (nr, nc)); else if (matrix.all_elements_are_real ()) if (matrix.cols () > 0 && matrix.rows () > 0 && (double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (double))) retval = new octave_matrix (::real (matrix.matrix_value ())); else retval = new octave_sparse_matrix (::real (matrix)); else if (matrix.cols () > 0 && matrix.rows () > 0 && (double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (Complex))) retval = new octave_complex_matrix (matrix.matrix_value ()); } else { if (matrix.all_elements_are_real ()) retval = new octave_sparse_matrix (::real (matrix)); } return retval; } double octave_sparse_complex_matrix::double_value (bool force_conversion) const { double retval = lo_ieee_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real scalar"); // FIXME: maybe this should be a function, valid_as_scalar() if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-to-scalar", "complex sparse matrix", "real scalar"); retval = std::real (matrix (0, 0)); } else gripe_invalid_conversion ("complex sparse matrix", "real scalar"); return retval; } Matrix octave_sparse_complex_matrix::matrix_value (bool force_conversion) const { Matrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real matrix"); retval = ::real (matrix.matrix_value ()); return retval; } Complex octave_sparse_complex_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); // FIXME: maybe this should be a function, valid_as_scalar() if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-to-scalar", "complex sparse matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("complex sparse matrix", "real scalar"); return retval; } ComplexMatrix octave_sparse_complex_matrix::complex_matrix_value (bool) const { return matrix.matrix_value (); } ComplexNDArray octave_sparse_complex_matrix::complex_array_value (bool) const { return ComplexNDArray (matrix.matrix_value ()); } charNDArray octave_sparse_complex_matrix::char_array_value (bool frc_str_conv) const { charNDArray retval; if (! frc_str_conv) gripe_implicit_conversion ("Octave:num-to-str", "sparse complex matrix", "string"); else { retval = charNDArray (dims (), 0); octave_idx_type nc = matrix.cols (); octave_idx_type nr = matrix.rows (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx (j); i < matrix.cidx (j+1); i++) retval(matrix.ridx (i) + nr * j) = static_cast<char>(std::real (matrix.data (i))); } return retval; } SparseMatrix octave_sparse_complex_matrix::sparse_matrix_value (bool force_conversion) const { SparseMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex sparse matrix", "real sparse matrix"); retval = ::real (matrix); return retval; } SparseBoolMatrix octave_sparse_complex_matrix::sparse_bool_matrix_value (bool warn) const { if (matrix.any_element_is_nan ()) gripe_nan_to_logical_conversion (); else if (warn && (! matrix.all_elements_are_real () || real (matrix).any_element_not_one_or_zero ())) gripe_logical_conversion (); return mx_el_ne (matrix, Complex (0.0)); } bool octave_sparse_complex_matrix::save_binary (std::ostream& os, bool&save_as_floats) { dim_vector d = this->dims (); if (d.length () < 1) return false; // Ensure that additional memory is deallocated matrix.maybe_compress (); int nr = d(0); int nc = d(1); int nz = nnz (); int32_t itmp; // Use negative value for ndims to be consistent with other formats itmp= -2; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nr; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nc; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nz; os.write (reinterpret_cast<char *> (&itmp), 4); save_type st = LS_DOUBLE; if (save_as_floats) { if (matrix.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else st = LS_FLOAT; } else if (matrix.nnz () > 8192) // FIXME: make this configurable. { double max_val, min_val; if (matrix.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } // add one to the printed indices to go from // zero-based to one-based arrays for (int i = 0; i < nc+1; i++) { octave_quit (); itmp = matrix.cidx (i); os.write (reinterpret_cast<char *> (&itmp), 4); } for (int i = 0; i < nz; i++) { octave_quit (); itmp = matrix.ridx (i); os.write (reinterpret_cast<char *> (&itmp), 4); } write_doubles (os, reinterpret_cast<const double *> (matrix.data ()), st, 2 * nz); return true; } bool octave_sparse_complex_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { int32_t nz, nc, nr, tmp; char ctmp; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); if (tmp != -2) { error ("load: only 2-D sparse matrices are supported"); return false; } if (! is.read (reinterpret_cast<char *> (&nr), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nz), 4)) return false; if (swap) { swap_bytes<4> (&nr); swap_bytes<4> (&nc); swap_bytes<4> (&nz); } SparseComplexMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); for (int i = 0; i < nc+1; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.cidx (i) = tmp; } for (int i = 0; i < nz; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.ridx (i) = tmp; } if (! is.read (reinterpret_cast<char *> (&ctmp), 1)) return false; read_doubles (is, reinterpret_cast<double *> (m.data ()), static_cast<save_type> (ctmp), 2 * nz, swap, fmt); if (error_state || ! is) return false; if (! m.indices_ok ()) return false; matrix = m; return true; } #if defined (HAVE_HDF5) bool octave_sparse_complex_matrix::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); // Ensure that additional memory is deallocated matrix.maybe_compress (); #if HAVE_HDF5_18 hid_t group_hid = H5Gcreate (loc_id, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else hid_t group_hid = H5Gcreate (loc_id, name, 0); #endif if (group_hid < 0) return false; hid_t space_hid = -1, data_hid = -1; bool retval = true; SparseComplexMatrix m = sparse_complex_matrix_value (); octave_idx_type tmp; hsize_t hdims[2]; space_hid = H5Screate_simple (0, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.rows (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.cols (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.nnz (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.cols () + 1; hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } octave_idx_type * itmp = m.xcidx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.nnz (); hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } hid_t save_type_hid = H5T_NATIVE_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else save_type_hid = H5T_NATIVE_FLOAT; } #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { double max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ hid_t type_hid = hdf5_make_complex_type (save_type_hid); if (type_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "data", type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "data", type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Tclose (type_hid); H5Gclose (group_hid); return false; } hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_DOUBLE); retval = false; if (complex_type_hid >= 0) { Complex * ctmp = m.xdata (); retval = H5Dwrite (data_hid, complex_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, ctmp) >= 0; } H5Dclose (data_hid); H5Sclose (space_hid); H5Tclose (type_hid); H5Gclose (group_hid); return retval; } bool octave_sparse_complex_matrix::load_hdf5 (hid_t loc_id, const char *name) { octave_idx_type nr, nc, nz; hid_t group_hid, data_hid, space_hid; hsize_t rank; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize (dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 group_hid = H5Gopen (loc_id, name, H5P_DEFAULT); #else group_hid = H5Gopen (loc_id, name); #endif if (group_hid < 0 ) return false; #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nr", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nr"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nr) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nc", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nc"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nc) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nz", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nz"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nz) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); SparseComplexMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "cidx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "cidx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nc + 1 || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } octave_idx_type *itmp = m.xcidx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "ridx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "ridx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "data", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "data"); #endif hid_t type_hid = H5Dget_type (data_hid); hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_DOUBLE); if (! hdf5_types_compatible (type_hid, complex_type)) { H5Tclose (complex_type); H5Dclose (data_hid); H5Gclose (group_hid); return false; } space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } Complex *ctmp = m.xdata (); bool retval = false; if (H5Dread (data_hid, complex_type, H5S_ALL, H5S_ALL, H5P_DEFAULT, ctmp) >= 0 && m.indices_ok ()) { retval = true; matrix = m; } H5Tclose (complex_type); H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return retval; } #endif mxArray * octave_sparse_complex_matrix::as_mxArray (void) const { mwSize nz = nzmax (); mxArray *retval = new mxArray (mxDOUBLE_CLASS, rows (), columns (), nz, mxCOMPLEX); double *pr = static_cast<double *> (retval->get_data ()); double *pi = static_cast<double *> (retval->get_imag_data ()); mwIndex *ir = retval->get_ir (); mwIndex *jc = retval->get_jc (); for (mwIndex i = 0; i < nz; i++) { Complex val = matrix.data (i); pr[i] = std::real (val); pi[i] = std::imag (val); ir[i] = matrix.ridx (i); } for (mwIndex i = 0; i < columns () + 1; i++) jc[i] = matrix.cidx (i); return retval; } octave_value octave_sparse_complex_matrix::map (unary_mapper_t umap) const { switch (umap) { // Mappers handled specially. case umap_real: return ::real (matrix); case umap_imag: return ::imag (matrix); #define ARRAY_METHOD_MAPPER(UMAP, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.FCN ()) ARRAY_METHOD_MAPPER (abs, abs); #define ARRAY_MAPPER(UMAP, TYPE, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.map<TYPE> (FCN)) ARRAY_MAPPER (acos, Complex, ::acos); ARRAY_MAPPER (acosh, Complex, ::acosh); ARRAY_MAPPER (angle, double, std::arg); ARRAY_MAPPER (arg, double, std::arg); ARRAY_MAPPER (asin, Complex, ::asin); ARRAY_MAPPER (asinh, Complex, ::asinh); ARRAY_MAPPER (atan, Complex, ::atan); ARRAY_MAPPER (atanh, Complex, ::atanh); ARRAY_MAPPER (erf, Complex, ::erf); ARRAY_MAPPER (erfc, Complex, ::erfc); ARRAY_MAPPER (erfcx, Complex, ::erfcx); ARRAY_MAPPER (erfi, Complex, ::erfi); ARRAY_MAPPER (dawson, Complex, ::dawson); ARRAY_MAPPER (ceil, Complex, ::ceil); ARRAY_MAPPER (conj, Complex, std::conj<double>); ARRAY_MAPPER (cos, Complex, std::cos); ARRAY_MAPPER (cosh, Complex, std::cosh); ARRAY_MAPPER (exp, Complex, std::exp); ARRAY_MAPPER (expm1, Complex, ::expm1); ARRAY_MAPPER (fix, Complex, ::fix); ARRAY_MAPPER (floor, Complex, ::floor); ARRAY_MAPPER (log, Complex, std::log); ARRAY_MAPPER (log2, Complex, xlog2); ARRAY_MAPPER (log10, Complex, std::log10); ARRAY_MAPPER (log1p, Complex, ::log1p); ARRAY_MAPPER (round, Complex, xround); ARRAY_MAPPER (roundb, Complex, xroundb); ARRAY_MAPPER (signum, Complex, ::signum); ARRAY_MAPPER (sin, Complex, std::sin); ARRAY_MAPPER (sinh, Complex, std::sinh); ARRAY_MAPPER (sqrt, Complex, std::sqrt); ARRAY_MAPPER (tan, Complex, std::tan); ARRAY_MAPPER (tanh, Complex, std::tanh); ARRAY_MAPPER (isnan, bool, xisnan); ARRAY_MAPPER (isna, bool, octave_is_NA); ARRAY_MAPPER (isinf, bool, xisinf); ARRAY_MAPPER (finite, bool, xfinite); default: // Attempt to go via dense matrix. return octave_base_sparse<SparseComplexMatrix>::map (umap); } }