Mercurial > hg > octave-nkf
view scripts/special-matrix/vander.m @ 19022:5eca3080c7cd
maint: Merge Stefan's changesets onto default after verification.
author | Rik <rik@octave.org> |
---|---|
date | Sat, 14 Jun 2014 13:24:46 -0700 |
parents | d63878346099 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 1993-2013 John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} vander (@var{c}) ## @deftypefnx {Function File} {} vander (@var{c}, @var{n}) ## Return the Vandermonde matrix whose next to last column is @var{c}. ## If @var{n} is specified, it determines the number of columns; ## otherwise, @var{n} is taken to be equal to the length of @var{c}. ## ## A Vandermonde matrix has the form: ## @tex ## $$ ## \left[\matrix{c_1^{n-1} & \cdots & c_1^2 & c_1 & 1 \cr ## c_2^{n-1} & \cdots & c_2^2 & c_2 & 1 \cr ## \vdots & \ddots & \vdots & \vdots & \vdots \cr ## c_n^{n-1} & \cdots & c_n^2 & c_n & 1 }\right] ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## c(1)^(n-1) @dots{} c(1)^2 c(1) 1 ## c(2)^(n-1) @dots{} c(2)^2 c(2) 1 ## . . . . . ## . . . . . ## . . . . . ## c(n)^(n-1) @dots{} c(n)^2 c(n) 1 ## @end group ## @end example ## ## @end ifnottex ## @seealso{polyfit} ## @end deftypefn ## Author: jwe function retval = vander (c, n) if (nargin == 1) n = length (c); elseif (nargin != 2) print_usage (); endif if (! isvector (c)) error ("vander: polynomial C must be a vector"); endif ## avoiding many ^s appears to be faster for n >= 100. retval = zeros (length (c), n, class (c)); d = 1; c = c(:); for i = n:-1:1 retval(:,i) = d; d .*= c; endfor endfunction %!test %! c = [0,1,2,3]; %! expect = [0,0,0,1; 1,1,1,1; 8,4,2,1; 27,9,3,1]; %! assert (vander (c), expect); %!assert (vander (1), 1) %!assert (vander ([1, 2, 3]), vander ([1; 2; 3])) %!assert (vander ([1, 2, 3]), [1, 1, 1; 4, 2, 1; 9, 3, 1]) %!assert (vander ([1, 2, 3]*i), [-1, i, 1; -4, 2i, 1; -9, 3i, 1]) %!assert (vander (2, 3), [4, 2, 1]) %!assert (vander ([2, 3], 3), [4, 2, 1; 9, 3, 1]) %!error vander () %!error vander (1, 2, 3) %!error <polynomial C must be a vector> vander ([1, 2; 3, 4])