Mercurial > hg > octave-nkf
view liboctave/MArray.cc @ 1315:611d403c7f3d
[project @ 1995-06-25 19:56:32 by jwe]
author | jwe |
---|---|
date | Sun, 25 Jun 1995 19:56:32 +0000 |
parents | f93b7fa5e113 |
children | 7eb93d12654c |
line wrap: on
line source
// MArray.cc -*- C++ -*- /* Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "MArray.h" #include "lo-error.h" // Nothing like a little CPP abuse to brighten everyone's day. Would // have been nice to do this with template functions but as of 2.5.x, // g++ seems to fail to resolve them properly. #define DO_VS_OP(OP) \ int l = a.length (); \ T *result = 0; \ if (l > 0) \ { \ result = new T [l]; \ const T *x = a.data (); \ for (int i = 0; i < l; i++) \ result[i] = x[i] OP s; \ } #define DO_SV_OP(OP) \ int l = a.length (); \ T *result = 0; \ if (l > 0) \ { \ result = new T [l]; \ const T *x = a.data (); \ for (int i = 0; i < l; i++) \ result[i] = s OP x[i]; \ } #define DO_VV_OP(OP) \ T *result = 0; \ if (l > 0) \ { \ result = new T [l]; \ const T *x = a.data (); \ const T *y = b.data (); \ for (int i = 0; i < l; i++) \ result[i] = x[i] OP y[i]; \ } #define NEG_V \ int l = a.length (); \ T *result = 0; \ if (l > 0) \ { \ result = new T [l]; \ const T *x = a.data (); \ for (int i = 0; i < l; i++) \ result[i] = -x[i]; \ } #define DO_VS_OP2(OP) \ int l = a.length (); \ if (l > 0) \ { \ T *tmp = a.fortran_vec (); \ for (int i = 0; i < l; i++) \ tmp[i] OP s; \ } #define DO_VV_OP2(OP) \ do \ { \ T *a_tmp = a.fortran_vec (); \ const T *b_tmp = b.data (); \ for (int i = 0; i < l; i++) \ a_tmp[i] += b_tmp[i]; \ } \ while (0) /* * One dimensional array with math ops. */ // Element by element MArray by scalar ops. template <class T> MArray<T>& operator += (MArray<T>& a, const T& s) { DO_VS_OP2 (+=) return a; } template <class T> MArray<T>& operator -= (MArray<T>& a, const T& s) { DO_VS_OP2 (-=) return a; } // Element by element MArray by MArray ops. template <class T> MArray<T>& operator += (MArray<T>& a, const MArray<T>& b) { int l = a.length (); if (l > 0) { if (l != b.length ()) (*current_liboctave_error_handler) \ ("nonconformant += array operation attempted"); \ else DO_VV_OP2 (+=); } return a; } template <class T> MArray<T>& operator -= (MArray<T>& a, const MArray<T>& b) { int l = a.length (); if (l > 0) { if (l != b.length ()) (*current_liboctave_error_handler) \ ("nonconformant -= array operation attempted"); \ else DO_VV_OP2 (-=); } return a; } // Element by element MArray by scalar ops. #define MARRAY_AS_OP(OP) \ template <class T> \ MArray<T> \ operator OP (const MArray<T>& a, const T& s) \ { \ DO_VS_OP (OP); \ return MArray<T> (result, l); \ } MARRAY_AS_OP (+) MARRAY_AS_OP (-) MARRAY_AS_OP (*) MARRAY_AS_OP (/) // Element by element scalar by MArray ops. #define MARRAY_SA_OP(OP) \ template <class T> \ MArray<T> \ operator OP (const T& s, const MArray<T>& a) \ { \ DO_SV_OP (OP); \ return MArray<T> (result, l); \ } MARRAY_SA_OP(+) MARRAY_SA_OP(-) MARRAY_SA_OP(*) MARRAY_SA_OP(/) // Element by element MArray by MArray ops. #define MARRAY_AA_OP(FCN, OP, OP_STR) \ template <class T> \ MArray<T> \ FCN (const MArray<T>& a, const MArray<T>& b) \ { \ int l = a.length (); \ if (l != b.length ()) \ { \ (*current_liboctave_error_handler) \ ("nonconformant array " OP_STR " attempted"); \ return MArray<T> (); \ } \ if (l == 0) \ return MArray<T> (); \ DO_VV_OP (OP); \ return MArray<T> (result, l); \ } MARRAY_AA_OP (operator +, +, "addition") MARRAY_AA_OP (operator -, -, "subtraction") MARRAY_AA_OP (product, *, "multiplication") MARRAY_AA_OP (quotient, /, "division") // Unary MArray ops. template <class T> MArray<T> operator - (const MArray<T>& a) { NEG_V; return MArray<T> (result, l); } /* * Two dimensional array with math ops. */ template <class T> MArray2<T>::MArray2 (const MDiagArray<T>& a) : Array2<T> (a.rows (), a.cols (), T (0)) { for (int i = 0; i < a.length (); i++) elem (i, i) = a.elem (i, i); } // Element by element MArray2 by scalar ops. template <class T> MArray2<T>& operator += (MArray2<T>& a, const T& s) { DO_VS_OP2 (+=) return a; } template <class T> MArray2<T>& operator -= (MArray2<T>& a, const T& s) { DO_VS_OP2 (-=) return a; } // Element by element MArray2 by MArray2 ops. template <class T> MArray2<T>& operator += (MArray2<T>& a, const MArray2<T>& b) { int r = a.rows (); int c = a.cols (); if (r != b.rows () || c != b.cols ()) { (*current_liboctave_error_handler) ("nonconformant += array operation attempted"); } else { if (r > 0 && c > 0) { int l = a.length (); DO_VV_OP2 (+=); } } return a; } template <class T> MArray2<T>& operator -= (MArray2<T>& a, const MArray2<T>& b) { int r = a.rows (); int c = a.cols (); if (r != b.rows () || c != b.cols ()) { (*current_liboctave_error_handler) ("nonconformant -= array operation attempted"); } else { if (r > 0 && c > 0) { int l = a.length (); DO_VV_OP2 (-=); } } return a; } // Element by element MArray2 by scalar ops. #define MARRAY_A2S_OP(OP) \ template <class T> \ MArray2<T> \ operator OP (const MArray2<T>& a, const T& s) \ { \ DO_VS_OP (OP); \ return MArray2<T> (result, a.rows (), a.cols ()); \ } MARRAY_A2S_OP (+) MARRAY_A2S_OP (-) MARRAY_A2S_OP (*) MARRAY_A2S_OP (/) // Element by element scalar by MArray2 ops. #define MARRAY_SA2_OP(OP) \ template <class T> \ MArray2<T> \ operator OP (const T& s, const MArray2<T>& a) \ { \ DO_SV_OP (OP); \ return MArray2<T> (result, a.rows (), a.cols ()); \ } MARRAY_SA2_OP (+) MARRAY_SA2_OP (-) MARRAY_SA2_OP (*) MARRAY_SA2_OP (/) // Element by element MArray2 by MArray2 ops. #define MARRAY_A2A2_OP(FCN, OP, OP_STR) \ template <class T> \ MArray2<T> \ FCN (const MArray2<T>& a, const MArray2<T>& b) \ { \ int r = a.rows (); \ int c = a.cols (); \ if (r != b.rows () || c != b.cols ()) \ { \ (*current_liboctave_error_handler) \ ("nonconformant array " OP_STR " attempted"); \ return MArray2<T> (); \ } \ if (r == 0 || c == 0) \ return MArray2<T> (); \ int l = a.length (); \ DO_VV_OP (OP); \ return MArray2<T> (result, r, c); \ } MARRAY_A2A2_OP (operator +, +, "addition") MARRAY_A2A2_OP (operator -, -, "subtraction") MARRAY_A2A2_OP (product, *, "product") MARRAY_A2A2_OP (quotient, /, "quotient") // Unary MArray2 ops. template <class T> MArray2<T> operator - (const MArray2<T>& a) { NEG_V; return MArray2<T> (result, a.rows (), a.cols ()); } /* * Two dimensional diagonal array with math ops. */ // Element by element MDiagArray by MDiagArray ops. template <class T> MDiagArray<T>& operator += (MDiagArray<T>& a, const MDiagArray<T>& b) { int r = a.rows (); int c = a.cols (); if (r != b.rows () || c != b.cols ()) { (*current_liboctave_error_handler) ("nonconformant array " OP_STR " attempted"); return MArray2<T> (); } else { int l = a.length (); T *a_tmp = a.fortran_vec (); const T *b_tmp = b.data (); for (int i = 0; i < l; i++) a_tmp[i] += b_tmp[i]; } return a; } template <class T> MDiagArray<T>& operator -= (MDiagArray<T>& a, const MDiagArray<T>& b) { int r = a.rows (); int c = a.cols (); if (r != b.rows () || c != b.cols ()) { (*current_liboctave_error_handler) ("nonconformant array " OP_STR " attempted"); return MArray2<T> (); } else { int l = a.length (); T *a_tmp = a.fortran_vec (); const T *b_tmp = b.data (); for (int i = 0; i < l; i++) a_tmp[i] -= b_tmp[i]; } return a; } // Element by element MDiagArray by scalar ops. #define MARRAY_DAS_OP(OP) \ template <class T> \ MDiagArray<T> \ operator OP (const MDiagArray<T>& a, const T& s) \ { \ DO_VS_OP (OP); \ return MDiagArray<T> (result, a.rows (), a.cols ()); \ } MARRAY_DAS_OP (*) MARRAY_DAS_OP (/) // Element by element scalar by MDiagArray ops. template <class T> MDiagArray<T> operator * (const T& s, const MDiagArray<T>& a) { DO_SV_OP (*); return MDiagArray<T> (result, a.rows (), a.cols ()); } // Element by element MDiagArray by MDiagArray ops. #define MARRAY_DADA_OP(FCN, OP, OP_STR) \ template <class T> \ MDiagArray<T> \ FCN (const MDiagArray<T>& a, const MDiagArray<T>& b) \ { \ int r = a.rows (); \ int c = a.cols (); \ if (r != b.rows () || c != b.cols ()) \ { \ (*current_liboctave_error_handler) \ ("nonconformant diagonal array " OP_STR " attempted"); \ return MDiagArray<T> (); \ } \ if (c == 0 || r == 0) \ return MDiagArray<T> (); \ int l = a.length (); \ DO_VV_OP (OP); \ return MDiagArray<T> (result, r, c); \ } MARRAY_DADA_OP (operator +, +, "addition") MARRAY_DADA_OP (operator -, -, "subtraction") MARRAY_DADA_OP (product, *, "product") // Unary MDiagArray ops. template <class T> MDiagArray<T> operator - (const MDiagArray<T>& a) { NEG_V; return MDiagArray<T> (result, a.rows (), a.cols ()); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */