Mercurial > hg > octave-nkf
view scripts/polynomial/mpoles.m @ 14104:614505385171 stable
doc: Overhaul docstrings for polynomial functions.
* mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m,
polygcd.m, polyint.m, polyout.m, polyreduce.m, polyval.m, polyvalm.m, ppder.m,
ppval.m, residue.m, roots.m, spline.m, unmkpp.m: Improve docstrings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 23 Dec 2011 20:09:27 -0800 |
parents | 663594b481e5 |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2007-2011 Ben Abbott ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}) ## @deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}) ## @deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}, @var{reorder}) ## Identify unique poles in @var{p} and their associated multiplicity. The ## output is ordered from largest pole to smallest pole. ## ## If the relative difference of two poles is less than @var{tol} then ## they are considered to be multiples. The default value for @var{tol} ## is 0.001. ## ## If the optional parameter @var{reorder} is zero, poles are not sorted. ## ## The output @var{multp} is a vector specifying the multiplicity of the ## poles. @code{@var{multp}(n)} refers to the multiplicity of the Nth pole ## @code{@var{p}(@var{idxp}(n))}. ## ## For example: ## ## @example ## @group ## p = [2 3 1 1 2]; ## [m, n] = mpoles(p); ## @result{} m = [1; 1; 2; 1; 2] ## @result{} n = [2; 5; 1; 4; 3] ## @result{} p(n) = [3, 2, 2, 1, 1] ## @end group ## @end example ## ## @seealso{residue, poly, roots, conv, deconv} ## @end deftypefn ## Author: Ben Abbott <bpabbott@mac.com> ## Created: Sept 30, 2007 function [multp, indx] = mpoles (p, tol, reorder) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin < 2 || isempty (tol)) tol = 0.001; endif if (nargin < 3 || isempty (reorder)) reorder = true; endif Np = numel (p); ## Force the poles to be a column vector. p = p(:); ## Sort the poles according to their magnitidues, largest first. if (reorder) ## Sort with smallest magnitude first. [p, ordr] = sort (p); ## Reverse order, largest maginitude first. n = Np:-1:1; p = p(n); ordr = ordr(n); else ordr = 1:Np; endif ## Find pole multiplicty by comparing the relative differnce in the ## poles. multp = zeros (Np, 1); indx = []; n = find (multp == 0, 1); while (n) dp = abs (p-p(n)); if (p(n) == 0.0) if (any (abs (p) > 0 & isfinite (p))) p0 = mean (abs (p(abs (p) > 0 & isfinite (p)))); else p0 = 1; endif else p0 = abs (p(n)); endif k = find (dp < tol * p0); ## Poles can only be members of one multiplicity group. if (numel (indx)) k = k(! ismember (k, indx)); endif m = 1:numel (k); multp(k) = m; indx = [indx; k]; n = find (multp == 0, 1); endwhile multp = multp(indx); indx = ordr(indx); endfunction %!test %! [mp, n] = mpoles ([0 0], 0.01); %! assert (mp, [1; 2])