Mercurial > hg > octave-nkf
view scripts/polynomial/polyaffine.m @ 14104:614505385171 stable
doc: Overhaul docstrings for polynomial functions.
* mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m,
polygcd.m, polyint.m, polyout.m, polyreduce.m, polyval.m, polyvalm.m, ppder.m,
ppval.m, residue.m, roots.m, spline.m, unmkpp.m: Improve docstrings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 23 Dec 2011 20:09:27 -0800 |
parents | d5bd2766c640 |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2009-2011 Tony Richardson, Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} polyaffine (@var{f}, @var{mu}) ## Return the coefficients of the polynomial vector @var{f} after an affine ## transformation. If @var{f} is the vector representing the polynomial f(x), ## then @code{@var{g} = polyaffine (@var{f}, @var{mu})} is the vector ## representing: ## ## @example ## g(x) = f((x-@var{mu}(1))/@var{mu}(2)). ## @end example ## ## @seealso{polyval, polyfit} ## @end deftypefn function g = polyaffine (f, mu) if (nargin != 2) print_usage (); endif if (! isvector (f)) error ("polyaffine: F must be a vector"); endif if (! isvector (mu) || length (mu) != 2) error ("polyaffine: MU must be a two-element vector"); endif lf = length (f); ## Ensure that f is a row vector if (rows (f) > 1) f = f.'; endif g = f; ## Scale. if (mu(2) != 1) g = g ./ (mu(2) .^ (lf-1:-1:0)); endif ## Translate. if (mu(1) != 0) w = (-mu(1)) .^ (0:lf-1); ii = lf:-1:1; g = g(ii) * (toeplitz (w) .* pascal (lf, -1)); g = g(ii); endif endfunction %!demo %! f = [1/5 4/5 -7/5 -2]; %! g = polyaffine (f, [1, 1.2]); %! x = linspace (-4, 4, 100); %! plot(x, polyval (f, x), x, polyval (g, x)); %! legend ("original", "affine"); %! axis ([-4 4 -3 5]); %! grid ("on"); %!test %! f = [1/5 4/5 -7/5 -2]; %! mu = [1, 1.2]; %! g = polyaffine (f, mu); %! x = linspace (-4, 4, 100); %! assert (polyval (f, x, [], mu), polyval (g, x), 1e-10);