Mercurial > hg > octave-nkf
view scripts/polynomial/ppder.m @ 14104:614505385171 stable
doc: Overhaul docstrings for polynomial functions.
* mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m, polyfit.m,
polygcd.m, polyint.m, polyout.m, polyreduce.m, polyval.m, polyvalm.m, ppder.m,
ppval.m, residue.m, roots.m, spline.m, unmkpp.m: Improve docstrings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 23 Dec 2011 20:09:27 -0800 |
parents | 9cae456085c2 |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2008-2011 VZLU Prague, a.s., Czech Republic ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this software; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {ppd =} ppder (pp) ## @deftypefnx {Function File} {ppd =} ppder (pp, m) ## Compute the piecewise @var{m}-th derivative of a piecewise polynomial ## struct @var{pp}. If @var{m} is omitted the first derivative is calculated. ## @seealso{mkpp, ppval, ppint} ## @end deftypefn function ppd = ppder (pp, m) if ((nargin < 1) || (nargin > 2)) print_usage (); elseif (nargin == 1) m = 1; endif if (! (isstruct (pp) && strcmp (pp.form, "pp"))) error ("ppder: PP must be a structure"); endif [x, p, n, k, d] = unmkpp (pp); if (k - m <= 0) x = [x(1) x(end)]; pd = zeros (prod (d), 1); else f = k : -1 : 1; ff = bincoeff (f, m + 1) .* factorial (m + 1) ./ f; k -= m; pd = p(:,1:k) * diag (ff(1:k)); endif ppd = mkpp (x, pd, d); endfunction %!shared x,y,pp,ppd %! x=0:8;y=[x.^2;x.^3+1];pp=spline(x,y); %! ppd=ppder(pp); %!assert(ppval(ppd,x),[2*x;3*x.^2],1e-14) %!assert(ppd.order,3) %! ppd=ppder(pp,2); %!assert(ppval(ppd,x),[2*ones(size(x));6*x],1e-14) %!assert(ppd.order,2) %! ppd=ppder(pp,3); %!assert(ppd.order,1) %!assert(ppd.pieces,8) %!assert(size(ppd.coefs),[16,1]) %! ppd=ppder(pp,4); %!assert(ppd.order,1) %!assert(ppd.pieces,1) %!assert(size(ppd.coefs),[2,1]) %!assert(ppval(ppd,x),zeros(size(y)),1e-14)