view liboctave/numeric/oct-fftw.cc @ 15271:648dabbb4c6b

build: Refactor liboctave into multiple subdirectories. Move libcruft into liboctave. * array/Array-C.cc, array/Array-b.cc, array/Array-ch.cc, array/Array-d.cc, array/Array-f.cc, array/Array-fC.cc, array/Array-i.cc, array/Array-idx-vec.cc, array/Array-s.cc, array/Array-str.cc, array/Array-util.cc, array/Array-util.h, array/Array-voidp.cc, array/Array.cc, array/Array.h, array/Array2.h, array/Array3.h, array/ArrayN.h, array/CColVector.cc, array/CColVector.h, array/CDiagMatrix.cc, array/CDiagMatrix.h, array/CMatrix.cc, array/CMatrix.h, array/CNDArray.cc, array/CNDArray.h, array/CRowVector.cc, array/CRowVector.h, array/CSparse.cc, array/CSparse.h, array/DiagArray2.cc, array/DiagArray2.h, array/MArray-C.cc, array/MArray-d.cc, array/MArray-decl.h, array/MArray-defs.h, array/MArray-f.cc, array/MArray-fC.cc, array/MArray-i.cc, array/MArray-s.cc, array/MArray.cc, array/MArray.h, array/MArray2.h, array/MArrayN.h, array/MDiagArray2.cc, array/MDiagArray2.h, array/MSparse-C.cc, array/MSparse-d.cc, array/MSparse-defs.h, array/MSparse.cc, array/MSparse.h, array/Matrix.h, array/MatrixType.cc, array/MatrixType.h, array/PermMatrix.cc, array/PermMatrix.h, array/Range.cc, array/Range.h, array/Sparse-C.cc, array/Sparse-b.cc, array/Sparse-d.cc, array/Sparse.cc, array/Sparse.h, array/boolMatrix.cc, array/boolMatrix.h, array/boolNDArray.cc, array/boolNDArray.h, array/boolSparse.cc, array/boolSparse.h, array/chMatrix.cc, array/chMatrix.h, array/chNDArray.cc, array/chNDArray.h, array/dColVector.cc, array/dColVector.h, array/dDiagMatrix.cc, array/dDiagMatrix.h, array/dMatrix.cc, array/dMatrix.h, array/dNDArray.cc, array/dNDArray.h, array/dRowVector.cc, array/dRowVector.h, array/dSparse.cc, array/dSparse.h, array/dim-vector.cc, array/dim-vector.h, array/fCColVector.cc, array/fCColVector.h, array/fCDiagMatrix.cc, array/fCDiagMatrix.h, array/fCMatrix.cc, array/fCMatrix.h, array/fCNDArray.cc, array/fCNDArray.h, array/fCRowVector.cc, array/fCRowVector.h, array/fColVector.cc, array/fColVector.h, array/fDiagMatrix.cc, array/fDiagMatrix.h, array/fMatrix.cc, array/fMatrix.h, array/fNDArray.cc, array/fNDArray.h, array/fRowVector.cc, array/fRowVector.h, array/idx-vector.cc, array/idx-vector.h, array/int16NDArray.cc, array/int16NDArray.h, array/int32NDArray.cc, array/int32NDArray.h, array/int64NDArray.cc, array/int64NDArray.h, array/int8NDArray.cc, array/int8NDArray.h, array/intNDArray.cc, array/intNDArray.h, array/module.mk, array/uint16NDArray.cc, array/uint16NDArray.h, array/uint32NDArray.cc, array/uint32NDArray.h, array/uint64NDArray.cc, array/uint64NDArray.h, array/uint8NDArray.cc, array/uint8NDArray.h: Moved from liboctave dir to array subdirectory. * cruft/Makefile.am, cruft/amos/README, cruft/amos/cacai.f, cruft/amos/cacon.f, cruft/amos/cairy.f, cruft/amos/casyi.f, cruft/amos/cbesh.f, cruft/amos/cbesi.f, cruft/amos/cbesj.f, cruft/amos/cbesk.f, cruft/amos/cbesy.f, cruft/amos/cbinu.f, cruft/amos/cbiry.f, cruft/amos/cbknu.f, cruft/amos/cbuni.f, cruft/amos/cbunk.f, cruft/amos/ckscl.f, cruft/amos/cmlri.f, cruft/amos/crati.f, cruft/amos/cs1s2.f, cruft/amos/cseri.f, cruft/amos/cshch.f, cruft/amos/cuchk.f, cruft/amos/cunhj.f, cruft/amos/cuni1.f, cruft/amos/cuni2.f, cruft/amos/cunik.f, cruft/amos/cunk1.f, cruft/amos/cunk2.f, cruft/amos/cuoik.f, cruft/amos/cwrsk.f, cruft/amos/dgamln.f, cruft/amos/gamln.f, cruft/amos/module.mk, cruft/amos/xzabs.f, cruft/amos/xzexp.f, cruft/amos/xzlog.f, cruft/amos/xzsqrt.f, cruft/amos/zacai.f, cruft/amos/zacon.f, cruft/amos/zairy.f, cruft/amos/zasyi.f, cruft/amos/zbesh.f, cruft/amos/zbesi.f, cruft/amos/zbesj.f, cruft/amos/zbesk.f, cruft/amos/zbesy.f, cruft/amos/zbinu.f, cruft/amos/zbiry.f, cruft/amos/zbknu.f, cruft/amos/zbuni.f, cruft/amos/zbunk.f, cruft/amos/zdiv.f, cruft/amos/zkscl.f, cruft/amos/zmlri.f, cruft/amos/zmlt.f, cruft/amos/zrati.f, cruft/amos/zs1s2.f, cruft/amos/zseri.f, cruft/amos/zshch.f, cruft/amos/zuchk.f, cruft/amos/zunhj.f, cruft/amos/zuni1.f, cruft/amos/zuni2.f, cruft/amos/zunik.f, cruft/amos/zunk1.f, cruft/amos/zunk2.f, cruft/amos/zuoik.f, cruft/amos/zwrsk.f, cruft/blas-xtra/cconv2.f, cruft/blas-xtra/cdotc3.f, cruft/blas-xtra/cmatm3.f, cruft/blas-xtra/csconv2.f, cruft/blas-xtra/dconv2.f, cruft/blas-xtra/ddot3.f, cruft/blas-xtra/dmatm3.f, cruft/blas-xtra/module.mk, cruft/blas-xtra/sconv2.f, cruft/blas-xtra/sdot3.f, cruft/blas-xtra/smatm3.f, cruft/blas-xtra/xcdotc.f, cruft/blas-xtra/xcdotu.f, cruft/blas-xtra/xddot.f, cruft/blas-xtra/xdnrm2.f, cruft/blas-xtra/xdznrm2.f, cruft/blas-xtra/xerbla.f, cruft/blas-xtra/xscnrm2.f, cruft/blas-xtra/xsdot.f, cruft/blas-xtra/xsnrm2.f, cruft/blas-xtra/xzdotc.f, cruft/blas-xtra/xzdotu.f, cruft/blas-xtra/zconv2.f, cruft/blas-xtra/zdconv2.f, cruft/blas-xtra/zdotc3.f, cruft/blas-xtra/zmatm3.f, cruft/daspk/datv.f, cruft/daspk/dcnst0.f, cruft/daspk/dcnstr.f, cruft/daspk/ddasic.f, cruft/daspk/ddasid.f, cruft/daspk/ddasik.f, cruft/daspk/ddaspk.f, cruft/daspk/ddstp.f, cruft/daspk/ddwnrm.f, cruft/daspk/dfnrmd.f, cruft/daspk/dfnrmk.f, cruft/daspk/dhels.f, cruft/daspk/dheqr.f, cruft/daspk/dinvwt.f, cruft/daspk/dlinsd.f, cruft/daspk/dlinsk.f, cruft/daspk/dmatd.f, cruft/daspk/dnedd.f, cruft/daspk/dnedk.f, cruft/daspk/dnsd.f, cruft/daspk/dnsid.f, cruft/daspk/dnsik.f, cruft/daspk/dnsk.f, cruft/daspk/dorth.f, cruft/daspk/dslvd.f, cruft/daspk/dslvk.f, cruft/daspk/dspigm.f, cruft/daspk/dyypnw.f, cruft/daspk/module.mk, cruft/dasrt/ddasrt.f, cruft/dasrt/drchek.f, cruft/dasrt/droots.f, cruft/dasrt/module.mk, cruft/dassl/ddaini.f, cruft/dassl/ddajac.f, cruft/dassl/ddanrm.f, cruft/dassl/ddaslv.f, cruft/dassl/ddassl.f, cruft/dassl/ddastp.f, cruft/dassl/ddatrp.f, cruft/dassl/ddawts.f, cruft/dassl/module.mk, cruft/fftpack/cfftb.f, cruft/fftpack/cfftb1.f, cruft/fftpack/cfftf.f, cruft/fftpack/cfftf1.f, cruft/fftpack/cffti.f, cruft/fftpack/cffti1.f, cruft/fftpack/fftpack.doc, cruft/fftpack/module.mk, cruft/fftpack/passb.f, cruft/fftpack/passb2.f, cruft/fftpack/passb3.f, cruft/fftpack/passb4.f, cruft/fftpack/passb5.f, cruft/fftpack/passf.f, cruft/fftpack/passf2.f, cruft/fftpack/passf3.f, cruft/fftpack/passf4.f, cruft/fftpack/passf5.f, cruft/fftpack/zfftb.f, cruft/fftpack/zfftb1.f, cruft/fftpack/zfftf.f, cruft/fftpack/zfftf1.f, cruft/fftpack/zffti.f, cruft/fftpack/zffti1.f, cruft/fftpack/zpassb.f, cruft/fftpack/zpassb2.f, cruft/fftpack/zpassb3.f, cruft/fftpack/zpassb4.f, cruft/fftpack/zpassb5.f, cruft/fftpack/zpassf.f, cruft/fftpack/zpassf2.f, cruft/fftpack/zpassf3.f, cruft/fftpack/zpassf4.f, cruft/fftpack/zpassf5.f, cruft/lapack-xtra/crsf2csf.f, cruft/lapack-xtra/module.mk, cruft/lapack-xtra/xclange.f, cruft/lapack-xtra/xdlamch.f, cruft/lapack-xtra/xdlange.f, cruft/lapack-xtra/xilaenv.f, cruft/lapack-xtra/xslamch.f, cruft/lapack-xtra/xslange.f, cruft/lapack-xtra/xzlange.f, cruft/lapack-xtra/zrsf2csf.f, cruft/link-deps.mk, cruft/misc/blaswrap.c, cruft/misc/cquit.c, cruft/misc/d1mach-tst.for, cruft/misc/d1mach.f, cruft/misc/f77-extern.cc, cruft/misc/f77-fcn.c, cruft/misc/f77-fcn.h, cruft/misc/i1mach.f, cruft/misc/lo-error.c, cruft/misc/lo-error.h, cruft/misc/module.mk, cruft/misc/quit.cc, cruft/misc/quit.h, cruft/misc/r1mach.f, cruft/mkf77def.in, cruft/odepack/cfode.f, cruft/odepack/dlsode.f, cruft/odepack/ewset.f, cruft/odepack/intdy.f, cruft/odepack/module.mk, cruft/odepack/prepj.f, cruft/odepack/scfode.f, cruft/odepack/sewset.f, cruft/odepack/sintdy.f, cruft/odepack/slsode.f, cruft/odepack/solsy.f, cruft/odepack/sprepj.f, cruft/odepack/ssolsy.f, cruft/odepack/sstode.f, cruft/odepack/stode.f, cruft/odepack/svnorm.f, cruft/odepack/vnorm.f, cruft/ordered-qz/README, cruft/ordered-qz/dsubsp.f, cruft/ordered-qz/exchqz.f, cruft/ordered-qz/module.mk, cruft/ordered-qz/sexchqz.f, cruft/ordered-qz/ssubsp.f, cruft/quadpack/dqagi.f, cruft/quadpack/dqagie.f, cruft/quadpack/dqagp.f, cruft/quadpack/dqagpe.f, cruft/quadpack/dqelg.f, cruft/quadpack/dqk15i.f, cruft/quadpack/dqk21.f, cruft/quadpack/dqpsrt.f, cruft/quadpack/module.mk, cruft/quadpack/qagi.f, cruft/quadpack/qagie.f, cruft/quadpack/qagp.f, cruft/quadpack/qagpe.f, cruft/quadpack/qelg.f, cruft/quadpack/qk15i.f, cruft/quadpack/qk21.f, cruft/quadpack/qpsrt.f, cruft/quadpack/xerror.f, cruft/ranlib/Basegen.doc, cruft/ranlib/HOWTOGET, cruft/ranlib/README, cruft/ranlib/advnst.f, cruft/ranlib/genbet.f, cruft/ranlib/genchi.f, cruft/ranlib/genexp.f, cruft/ranlib/genf.f, cruft/ranlib/gengam.f, cruft/ranlib/genmn.f, cruft/ranlib/genmul.f, cruft/ranlib/gennch.f, cruft/ranlib/gennf.f, cruft/ranlib/gennor.f, cruft/ranlib/genprm.f, cruft/ranlib/genunf.f, cruft/ranlib/getcgn.f, cruft/ranlib/getsd.f, cruft/ranlib/ignbin.f, cruft/ranlib/ignlgi.f, cruft/ranlib/ignnbn.f, cruft/ranlib/ignpoi.f, cruft/ranlib/ignuin.f, cruft/ranlib/initgn.f, cruft/ranlib/inrgcm.f, cruft/ranlib/lennob.f, cruft/ranlib/mltmod.f, cruft/ranlib/module.mk, cruft/ranlib/phrtsd.f, cruft/ranlib/qrgnin.f, cruft/ranlib/randlib.chs, cruft/ranlib/randlib.fdoc, cruft/ranlib/ranf.f, cruft/ranlib/setall.f, cruft/ranlib/setant.f, cruft/ranlib/setgmn.f, cruft/ranlib/setsd.f, cruft/ranlib/sexpo.f, cruft/ranlib/sgamma.f, cruft/ranlib/snorm.f, cruft/ranlib/tstbot.for, cruft/ranlib/tstgmn.for, cruft/ranlib/tstmid.for, cruft/ranlib/wrap.f, cruft/slatec-err/fdump.f, cruft/slatec-err/ixsav.f, cruft/slatec-err/j4save.f, cruft/slatec-err/module.mk, cruft/slatec-err/xerclr.f, cruft/slatec-err/xercnt.f, cruft/slatec-err/xerhlt.f, cruft/slatec-err/xermsg.f, cruft/slatec-err/xerprn.f, cruft/slatec-err/xerrwd.f, cruft/slatec-err/xersve.f, cruft/slatec-err/xgetf.f, cruft/slatec-err/xgetua.f, cruft/slatec-err/xsetf.f, cruft/slatec-err/xsetua.f, cruft/slatec-fn/acosh.f, cruft/slatec-fn/albeta.f, cruft/slatec-fn/algams.f, cruft/slatec-fn/alngam.f, cruft/slatec-fn/alnrel.f, cruft/slatec-fn/asinh.f, cruft/slatec-fn/atanh.f, cruft/slatec-fn/betai.f, cruft/slatec-fn/csevl.f, cruft/slatec-fn/d9gmit.f, cruft/slatec-fn/d9lgic.f, cruft/slatec-fn/d9lgit.f, cruft/slatec-fn/d9lgmc.f, cruft/slatec-fn/dacosh.f, cruft/slatec-fn/dasinh.f, cruft/slatec-fn/datanh.f, cruft/slatec-fn/dbetai.f, cruft/slatec-fn/dcsevl.f, cruft/slatec-fn/derf.f, cruft/slatec-fn/derfc.in.f, cruft/slatec-fn/dgami.f, cruft/slatec-fn/dgamit.f, cruft/slatec-fn/dgamlm.f, cruft/slatec-fn/dgamma.f, cruft/slatec-fn/dgamr.f, cruft/slatec-fn/dlbeta.f, cruft/slatec-fn/dlgams.f, cruft/slatec-fn/dlngam.f, cruft/slatec-fn/dlnrel.f, cruft/slatec-fn/dpchim.f, cruft/slatec-fn/dpchst.f, cruft/slatec-fn/erf.f, cruft/slatec-fn/erfc.in.f, cruft/slatec-fn/gami.f, cruft/slatec-fn/gamit.f, cruft/slatec-fn/gamlim.f, cruft/slatec-fn/gamma.f, cruft/slatec-fn/gamr.f, cruft/slatec-fn/initds.f, cruft/slatec-fn/inits.f, cruft/slatec-fn/module.mk, cruft/slatec-fn/pchim.f, cruft/slatec-fn/pchst.f, cruft/slatec-fn/r9gmit.f, cruft/slatec-fn/r9lgic.f, cruft/slatec-fn/r9lgit.f, cruft/slatec-fn/r9lgmc.f, cruft/slatec-fn/xacosh.f, cruft/slatec-fn/xasinh.f, cruft/slatec-fn/xatanh.f, cruft/slatec-fn/xbetai.f, cruft/slatec-fn/xdacosh.f, cruft/slatec-fn/xdasinh.f, cruft/slatec-fn/xdatanh.f, cruft/slatec-fn/xdbetai.f, cruft/slatec-fn/xderf.f, cruft/slatec-fn/xderfc.f, cruft/slatec-fn/xdgami.f, cruft/slatec-fn/xdgamit.f, cruft/slatec-fn/xdgamma.f, cruft/slatec-fn/xerf.f, cruft/slatec-fn/xerfc.f, cruft/slatec-fn/xgamma.f, cruft/slatec-fn/xgmainc.f, cruft/slatec-fn/xsgmainc.f: Moved from top-level libcruft to cruft directory below liboctave. * numeric/CmplxAEPBAL.cc, numeric/CmplxAEPBAL.h, numeric/CmplxCHOL.cc, numeric/CmplxCHOL.h, numeric/CmplxGEPBAL.cc, numeric/CmplxGEPBAL.h, numeric/CmplxHESS.cc, numeric/CmplxHESS.h, numeric/CmplxLU.cc, numeric/CmplxLU.h, numeric/CmplxQR.cc, numeric/CmplxQR.h, numeric/CmplxQRP.cc, numeric/CmplxQRP.h, numeric/CmplxSCHUR.cc, numeric/CmplxSCHUR.h, numeric/CmplxSVD.cc, numeric/CmplxSVD.h, numeric/CollocWt.cc, numeric/CollocWt.h, numeric/DAE.h, numeric/DAEFunc.h, numeric/DAERT.h, numeric/DAERTFunc.h, numeric/DASPK-opts.in, numeric/DASPK.cc, numeric/DASPK.h, numeric/DASRT-opts.in, numeric/DASRT.cc, numeric/DASRT.h, numeric/DASSL-opts.in, numeric/DASSL.cc, numeric/DASSL.h, numeric/DET.h, numeric/EIG.cc, numeric/EIG.h, numeric/LSODE-opts.in, numeric/LSODE.cc, numeric/LSODE.h, numeric/ODE.h, numeric/ODEFunc.h, numeric/ODES.cc, numeric/ODES.h, numeric/ODESFunc.h, numeric/Quad-opts.in, numeric/Quad.cc, numeric/Quad.h, numeric/SparseCmplxCHOL.cc, numeric/SparseCmplxCHOL.h, numeric/SparseCmplxLU.cc, numeric/SparseCmplxLU.h, numeric/SparseCmplxQR.cc, numeric/SparseCmplxQR.h, numeric/SparseQR.cc, numeric/SparseQR.h, numeric/SparsedbleCHOL.cc, numeric/SparsedbleCHOL.h, numeric/SparsedbleLU.cc, numeric/SparsedbleLU.h, numeric/base-aepbal.h, numeric/base-dae.h, numeric/base-de.h, numeric/base-lu.cc, numeric/base-lu.h, numeric/base-min.h, numeric/base-qr.cc, numeric/base-qr.h, numeric/bsxfun-decl.h, numeric/bsxfun-defs.cc, numeric/bsxfun.h, numeric/dbleAEPBAL.cc, numeric/dbleAEPBAL.h, numeric/dbleCHOL.cc, numeric/dbleCHOL.h, numeric/dbleGEPBAL.cc, numeric/dbleGEPBAL.h, numeric/dbleHESS.cc, numeric/dbleHESS.h, numeric/dbleLU.cc, numeric/dbleLU.h, numeric/dbleQR.cc, numeric/dbleQR.h, numeric/dbleQRP.cc, numeric/dbleQRP.h, numeric/dbleSCHUR.cc, numeric/dbleSCHUR.h, numeric/dbleSVD.cc, numeric/dbleSVD.h, numeric/eigs-base.cc, numeric/fCmplxAEPBAL.cc, numeric/fCmplxAEPBAL.h, numeric/fCmplxCHOL.cc, numeric/fCmplxCHOL.h, numeric/fCmplxGEPBAL.cc, numeric/fCmplxGEPBAL.h, numeric/fCmplxHESS.cc, numeric/fCmplxHESS.h, numeric/fCmplxLU.cc, numeric/fCmplxLU.h, numeric/fCmplxQR.cc, numeric/fCmplxQR.h, numeric/fCmplxQRP.cc, numeric/fCmplxQRP.h, numeric/fCmplxSCHUR.cc, numeric/fCmplxSCHUR.h, numeric/fCmplxSVD.cc, numeric/fCmplxSVD.h, numeric/fEIG.cc, numeric/fEIG.h, numeric/floatAEPBAL.cc, numeric/floatAEPBAL.h, numeric/floatCHOL.cc, numeric/floatCHOL.h, numeric/floatGEPBAL.cc, numeric/floatGEPBAL.h, numeric/floatHESS.cc, numeric/floatHESS.h, numeric/floatLU.cc, numeric/floatLU.h, numeric/floatQR.cc, numeric/floatQR.h, numeric/floatQRP.cc, numeric/floatQRP.h, numeric/floatSCHUR.cc, numeric/floatSCHUR.h, numeric/floatSVD.cc, numeric/floatSVD.h, numeric/lo-mappers.cc, numeric/lo-mappers.h, numeric/lo-specfun.cc, numeric/lo-specfun.h, numeric/module.mk, numeric/oct-convn.cc, numeric/oct-convn.h, numeric/oct-fftw.cc, numeric/oct-fftw.h, numeric/oct-norm.cc, numeric/oct-norm.h, numeric/oct-rand.cc, numeric/oct-rand.h, numeric/oct-spparms.cc, numeric/oct-spparms.h, numeric/randgamma.c, numeric/randgamma.h, numeric/randmtzig.c, numeric/randmtzig.h, numeric/randpoisson.c, numeric/randpoisson.h, numeric/sparse-base-chol.cc, numeric/sparse-base-chol.h, numeric/sparse-base-lu.cc, numeric/sparse-base-lu.h, numeric/sparse-dmsolve.cc: Moved from liboctave dir to numeric subdirectory. * operators/Sparse-diag-op-defs.h, operators/Sparse-op-defs.h, operators/Sparse-perm-op-defs.h, operators/config-ops.sh, operators/mk-ops.awk, operators/module.mk, operators/mx-base.h, operators/mx-defs.h, operators/mx-ext.h, operators/mx-inlines.cc, operators/mx-op-decl.h, operators/mx-op-defs.h, operators/mx-ops, operators/sparse-mk-ops.awk, operators/sparse-mx-ops, operators/vx-ops: Moved from liboctave dir to operators subdirectory. * system/dir-ops.cc, system/dir-ops.h, system/file-ops.cc, system/file-ops.h, system/file-stat.cc, system/file-stat.h, system/lo-sysdep.cc, system/lo-sysdep.h, system/mach-info.cc, system/mach-info.h, system/module.mk, system/oct-env.cc, system/oct-env.h, system/oct-group.cc, system/oct-group.h, system/oct-openmp.h, system/oct-passwd.cc, system/oct-passwd.h, system/oct-syscalls.cc, system/oct-syscalls.h, system/oct-time.cc, system/oct-time.h, system/oct-uname.cc, system/oct-uname.h, system/pathlen.h, system/sysdir.h, system/syswait.h, system/tempnam.c, system/tempname.c: Moved from liboctave dir to system subdirectory. * util/base-list.h, util/byte-swap.h, util/caseless-str.h, util/cmd-edit.cc, util/cmd-edit.h, util/cmd-hist.cc, util/cmd-hist.h, util/data-conv.cc, util/data-conv.h, util/f2c-main.c, util/functor.h, util/glob-match.cc, util/glob-match.h, util/kpse.cc, util/lo-array-gripes.cc, util/lo-array-gripes.h, util/lo-cieee.c, util/lo-cutils.c, util/lo-cutils.h, util/lo-ieee.cc, util/lo-ieee.h, util/lo-macros.h, util/lo-math.h, util/lo-traits.h, util/lo-utils.cc, util/lo-utils.h, util/module.mk, util/oct-alloc.cc, util/oct-alloc.h, util/oct-base64.cc, util/oct-base64.h, util/oct-binmap.h, util/oct-cmplx.h, util/oct-glob.cc, util/oct-glob.h, util/oct-inttypes.cc, util/oct-inttypes.h, util/oct-locbuf.cc, util/oct-locbuf.h, util/oct-md5.cc, util/oct-md5.h, util/oct-mem.h, util/oct-mutex.cc, util/oct-mutex.h, util/oct-refcount.h, util/oct-rl-edit.c, util/oct-rl-edit.h, util/oct-rl-hist.c, util/oct-rl-hist.h, util/oct-shlib.cc, util/oct-shlib.h, util/oct-sort.cc, util/oct-sort.h, util/oct-sparse.h, util/pathsearch.cc, util/pathsearch.h, util/regexp.cc, util/regexp.h, util/singleton-cleanup.cc, util/singleton-cleanup.h, util/sparse-sort.cc, util/sparse-sort.h, util/sparse-util.cc, util/sparse-util.h, util/statdefs.h, util/str-vec.cc, util/str-vec.h, util/sun-utils.h: Moved from liboctave dir to util subdirectory. * Makefile.am: Eliminate reference to top-level liboctave directory. * autogen.sh: cd to new liboctave/operators directory to run config-ops.sh. * build-aux/common.mk: Eliminate LIBCRUFT references. * configure.ac: Eliminate libcruft top-level references. Switch test programs to find files in liboctave/cruft subdirectory. * OctaveFAQ.texi, install.txi, mkoctfile.1: Eliminate references to libcruft in docs. * libgui/src/Makefile.am, libinterp/Makefile.am, src/Makefile.am: Update include file locations. Stop linking against libcruft. * libinterp/corefcn/module.mk: Update location of OPT_INC files which are now in numeric/ subdirectory. * libinterp/dldfcn/config-module.awk: Stop linking against libcruft. * libinterp/interpfcn/toplev.cc: Remove reference to LIBCRUFT. * libinterp/link-deps.mk, liboctave/link-deps.mk: Add GNULIB_LINK_DEPS to link dependencies. * libinterp/oct-conf.in.h: Remove reference to OCTAVE_CONF_LIBCRUFT. * liboctave/Makefile.am: Overhaul to use convenience libraries in subdirectories. * scripts/miscellaneous/mkoctfile.m: Eliminate reference to LIBCRUFT. * src/mkoctfile.in.cc, src/mkoctfile.in.sh: Stop linking againt libcruft. Eliminate references to LIBCRUFT.
author Rik <rik@octave.org>
date Fri, 31 Aug 2012 20:00:20 -0700
parents liboctave/oct-fftw.cc@3d8ace26c5b4
children bde7731b2b83
line wrap: on
line source

/*

Copyright (C) 2001-2012 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined (HAVE_FFTW)

#include <iostream>
#include <vector>

#include "lo-error.h"
#include "oct-fftw.h"
#include "quit.h"
#include "oct-locbuf.h"
#include "singleton-cleanup.h"

octave_fftw_planner *octave_fftw_planner::instance = 0;

// Helper class to create and cache FFTW plans for both 1D and
// 2D. This implementation defaults to using FFTW_ESTIMATE to create
// the plans, which in theory is suboptimal, but provides quite
// reasonable performance in practice.

// Also note that if FFTW_ESTIMATE is not used then the planner in FFTW3
// will destroy the input and output arrays. We must, therefore, create a
// temporary input array with the same size and 16-byte alignment as
// the original array when using a different planner strategy.
// Note that we also use any wisdom that is available, either in a
// FFTW3 system wide file or as supplied by the user.

// FIXME -- if we can ensure 16 byte alignment in Array<T>
// (<T> *data) the FFTW3 can use SIMD instructions for further
// acceleration.

// Note that it is profitable to store the FFTW3 plans, for small FFTs.

octave_fftw_planner::octave_fftw_planner (void)
  : meth (ESTIMATE), rplan (0), rd (0), rs (0), rr (0), rh (0), rn (),
    rsimd_align (false)
{
  plan[0] = plan[1] = 0;
  d[0] = d[1] = s[0] = s[1] = r[0] = r[1] = h[0] = h[1] = 0;
  simd_align[0] = simd_align[1] = false;
  inplace[0] = inplace[1] = false;
  n[0] = n[1] = dim_vector ();

  // If we have a system wide wisdom file, import it.
  fftw_import_system_wisdom ();
}

octave_fftw_planner::~octave_fftw_planner (void)
{
  fftw_plan *plan_p;

  plan_p = &rplan;
  if (*plan_p)
    fftw_destroy_plan (*plan_p);

  plan_p = &plan[0];
  if (*plan_p)
    fftw_destroy_plan (*plan_p);

  plan_p = &plan[1];
  if (*plan_p)
    fftw_destroy_plan (*plan_p);
}

bool
octave_fftw_planner::instance_ok (void)
{
  bool retval = true;

  if (! instance)
    {
      instance = new octave_fftw_planner ();

      if (instance)
        singleton_cleanup_list::add (cleanup_instance);
    }

  if (! instance)
    {
      (*current_liboctave_error_handler)
        ("unable to create octave_fftw_planner object!");

      retval = false;
    }

  return retval;
}

#define CHECK_SIMD_ALIGNMENT(x) \
  (((reinterpret_cast<ptrdiff_t> (x)) & 0xF) == 0)

fftw_plan
octave_fftw_planner::do_create_plan (int dir, const int rank,
                                     const dim_vector dims,
                                     octave_idx_type howmany,
                                     octave_idx_type stride,
                                     octave_idx_type dist,
                                     const Complex *in, Complex *out)
{
  int which = (dir == FFTW_FORWARD) ? 0 : 1;
  fftw_plan *cur_plan_p = &plan[which];
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);
  bool ioinplace = (in == out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (plan[which] == 0 || d[which] != dist || s[which] != stride
      || r[which] != rank || h[which] != howmany
      || ioinplace != inplace[which]
      || ((ioalign != simd_align[which]) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
        if (dims(i) != n[which](i))
          {
            create_new_plan = true;
            break;
          }
    }

  if (create_new_plan)
    {
      d[which] = dist;
      s[which] = stride;
      r[which] = rank;
      h[which] = howmany;
      simd_align[which] = ioalign;
      inplace[which] = ioinplace;
      n[which] = dims;

      // Note reversal of dimensions for column major storage in FFTW.
      octave_idx_type nn = 1;
      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
        {
          tmp[i] = dims(j);
          nn *= dims(j);
        }

      int plan_flags = 0;
      bool plan_destroys_in = true;

      switch (meth)
        {
        case UNKNOWN:
        case ESTIMATE:
          plan_flags |= FFTW_ESTIMATE;
          plan_destroys_in = false;
          break;
        case MEASURE:
          plan_flags |= FFTW_MEASURE;
          break;
        case PATIENT:
          plan_flags |= FFTW_PATIENT;
          break;
        case EXHAUSTIVE:
          plan_flags |= FFTW_EXHAUSTIVE;
          break;
        case HYBRID:
          if (nn < 8193)
            plan_flags |= FFTW_MEASURE;
          else
            {
              plan_flags |= FFTW_ESTIMATE;
              plan_destroys_in = false;
            }
          break;
        }

      if (ioalign)
        plan_flags &= ~FFTW_UNALIGNED;
      else
        plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
        fftw_destroy_plan (*cur_plan_p);

      if (plan_destroys_in)
        {
          // Create matrix with the same size and 16-byte alignment as input
          OCTAVE_LOCAL_BUFFER (Complex, itmp, nn * howmany + 32);
          itmp = reinterpret_cast<Complex *>
            (((reinterpret_cast<ptrdiff_t>(itmp) + 15) & ~ 0xF) +
             ((reinterpret_cast<ptrdiff_t> (in)) & 0xF));

          *cur_plan_p =
            fftw_plan_many_dft (rank, tmp, howmany,
              reinterpret_cast<fftw_complex *> (itmp),
              0, stride, dist, reinterpret_cast<fftw_complex *> (out),
              0, stride, dist, dir, plan_flags);
        }
      else
        {
          *cur_plan_p =
            fftw_plan_many_dft (rank, tmp, howmany,
              reinterpret_cast<fftw_complex *> (const_cast<Complex *> (in)),
              0, stride, dist, reinterpret_cast<fftw_complex *> (out),
              0, stride, dist, dir, plan_flags);
        }

      if (*cur_plan_p == 0)
        (*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}

fftw_plan
octave_fftw_planner::do_create_plan (const int rank, const dim_vector dims,
                                     octave_idx_type howmany,
                                     octave_idx_type stride,
                                     octave_idx_type dist,
                                     const double *in, Complex *out)
{
  fftw_plan *cur_plan_p = &rplan;
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (rplan == 0 || rd != dist || rs != stride || rr != rank
      || rh != howmany || ((ioalign != rsimd_align) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
        if (dims(i) != rn(i))
          {
            create_new_plan = true;
            break;
          }
    }

  if (create_new_plan)
    {
      rd = dist;
      rs = stride;
      rr = rank;
      rh = howmany;
      rsimd_align = ioalign;
      rn = dims;

      // Note reversal of dimensions for column major storage in FFTW.
      octave_idx_type nn = 1;
      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
        {
          tmp[i] = dims(j);
          nn *= dims(j);
        }

      int plan_flags = 0;
      bool plan_destroys_in = true;

      switch (meth)
        {
        case UNKNOWN:
        case ESTIMATE:
          plan_flags |= FFTW_ESTIMATE;
          plan_destroys_in = false;
          break;
        case MEASURE:
          plan_flags |= FFTW_MEASURE;
          break;
        case PATIENT:
          plan_flags |= FFTW_PATIENT;
          break;
        case EXHAUSTIVE:
          plan_flags |= FFTW_EXHAUSTIVE;
          break;
        case HYBRID:
          if (nn < 8193)
            plan_flags |= FFTW_MEASURE;
          else
            {
              plan_flags |= FFTW_ESTIMATE;
              plan_destroys_in = false;
            }
          break;
        }

      if (ioalign)
        plan_flags &= ~FFTW_UNALIGNED;
      else
        plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
        fftw_destroy_plan (*cur_plan_p);

      if (plan_destroys_in)
        {
          // Create matrix with the same size and 16-byte alignment as input
          OCTAVE_LOCAL_BUFFER (double, itmp, nn + 32);
          itmp = reinterpret_cast<double *>
            (((reinterpret_cast<ptrdiff_t>(itmp) + 15) & ~ 0xF) +
             ((reinterpret_cast<ptrdiff_t> (in)) & 0xF));

          *cur_plan_p =
            fftw_plan_many_dft_r2c (rank, tmp, howmany, itmp,
              0, stride, dist, reinterpret_cast<fftw_complex *> (out),
              0, stride, dist, plan_flags);
        }
      else
        {
          *cur_plan_p =
            fftw_plan_many_dft_r2c (rank, tmp, howmany,
              (const_cast<double *> (in)),
              0, stride, dist, reinterpret_cast<fftw_complex *> (out),
              0, stride, dist, plan_flags);
        }

      if (*cur_plan_p == 0)
        (*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}

octave_fftw_planner::FftwMethod
octave_fftw_planner::do_method (void)
{
  return meth;
}

octave_fftw_planner::FftwMethod
octave_fftw_planner::do_method (FftwMethod _meth)
{
  FftwMethod ret = meth;
  if (_meth == ESTIMATE || _meth == MEASURE
      || _meth == PATIENT || _meth == EXHAUSTIVE
      || _meth == HYBRID)
    {
      if (meth != _meth)
        {
          meth = _meth;
          if (rplan)
            fftw_destroy_plan (rplan);
          if (plan[0])
            fftw_destroy_plan (plan[0]);
          if (plan[1])
            fftw_destroy_plan (plan[1]);
          rplan = plan[0] = plan[1] = 0;
        }
    }
  else
    ret = UNKNOWN;
  return ret;
}

octave_float_fftw_planner *octave_float_fftw_planner::instance = 0;

octave_float_fftw_planner::octave_float_fftw_planner (void)
  : meth (ESTIMATE), rplan (0), rd (0), rs (0), rr (0), rh (0), rn (),
    rsimd_align (false)
{
  plan[0] = plan[1] = 0;
  d[0] = d[1] = s[0] = s[1] = r[0] = r[1] = h[0] = h[1] = 0;
  simd_align[0] = simd_align[1] = false;
  inplace[0] = inplace[1] = false;
  n[0] = n[1] = dim_vector ();

  // If we have a system wide wisdom file, import it.
  fftwf_import_system_wisdom ();
}

octave_float_fftw_planner::~octave_float_fftw_planner (void)
{
  fftwf_plan *plan_p;

  plan_p = &rplan;
  if (*plan_p)
    fftwf_destroy_plan (*plan_p);

  plan_p = &plan[0];
  if (*plan_p)
    fftwf_destroy_plan (*plan_p);

  plan_p = &plan[1];
  if (*plan_p)
    fftwf_destroy_plan (*plan_p);
}

bool
octave_float_fftw_planner::instance_ok (void)
{
  bool retval = true;

  if (! instance)
    {
      instance = new octave_float_fftw_planner ();

      if (instance)
        singleton_cleanup_list::add (cleanup_instance);
    }

  if (! instance)
    {
      (*current_liboctave_error_handler)
        ("unable to create octave_fftw_planner object!");

      retval = false;
    }

  return retval;
}

fftwf_plan
octave_float_fftw_planner::do_create_plan (int dir, const int rank,
                                           const dim_vector dims,
                                           octave_idx_type howmany,
                                           octave_idx_type stride,
                                           octave_idx_type dist,
                                           const FloatComplex *in,
                                           FloatComplex *out)
{
  int which = (dir == FFTW_FORWARD) ? 0 : 1;
  fftwf_plan *cur_plan_p = &plan[which];
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);
  bool ioinplace = (in == out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (plan[which] == 0 || d[which] != dist || s[which] != stride
      || r[which] != rank || h[which] != howmany
      || ioinplace != inplace[which]
      || ((ioalign != simd_align[which]) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
        if (dims(i) != n[which](i))
          {
            create_new_plan = true;
            break;
          }
    }

  if (create_new_plan)
    {
      d[which] = dist;
      s[which] = stride;
      r[which] = rank;
      h[which] = howmany;
      simd_align[which] = ioalign;
      inplace[which] = ioinplace;
      n[which] = dims;

      // Note reversal of dimensions for column major storage in FFTW.
      octave_idx_type nn = 1;
      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
        {
          tmp[i] = dims(j);
          nn *= dims(j);
        }

      int plan_flags = 0;
      bool plan_destroys_in = true;

      switch (meth)
        {
        case UNKNOWN:
        case ESTIMATE:
          plan_flags |= FFTW_ESTIMATE;
          plan_destroys_in = false;
          break;
        case MEASURE:
          plan_flags |= FFTW_MEASURE;
          break;
        case PATIENT:
          plan_flags |= FFTW_PATIENT;
          break;
        case EXHAUSTIVE:
          plan_flags |= FFTW_EXHAUSTIVE;
          break;
        case HYBRID:
          if (nn < 8193)
            plan_flags |= FFTW_MEASURE;
          else
            {
              plan_flags |= FFTW_ESTIMATE;
              plan_destroys_in = false;
            }
          break;
        }

      if (ioalign)
        plan_flags &= ~FFTW_UNALIGNED;
      else
        plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
        fftwf_destroy_plan (*cur_plan_p);

      if (plan_destroys_in)
        {
          // Create matrix with the same size and 16-byte alignment as input
          OCTAVE_LOCAL_BUFFER (FloatComplex, itmp, nn * howmany + 32);
          itmp = reinterpret_cast<FloatComplex *>
            (((reinterpret_cast<ptrdiff_t>(itmp) + 15) & ~ 0xF) +
             ((reinterpret_cast<ptrdiff_t> (in)) & 0xF));

          *cur_plan_p =
            fftwf_plan_many_dft (rank, tmp, howmany,
              reinterpret_cast<fftwf_complex *> (itmp),
              0, stride, dist, reinterpret_cast<fftwf_complex *> (out),
              0, stride, dist, dir, plan_flags);
        }
      else
        {
          *cur_plan_p =
            fftwf_plan_many_dft (rank, tmp, howmany,
              reinterpret_cast<fftwf_complex *> (const_cast<FloatComplex *> (in)),
              0, stride, dist, reinterpret_cast<fftwf_complex *> (out),
              0, stride, dist, dir, plan_flags);
        }

      if (*cur_plan_p == 0)
        (*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}

fftwf_plan
octave_float_fftw_planner::do_create_plan (const int rank,
                                           const dim_vector dims,
                                           octave_idx_type howmany,
                                           octave_idx_type stride,
                                           octave_idx_type dist,
                                           const float *in, FloatComplex *out)
{
  fftwf_plan *cur_plan_p = &rplan;
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (rplan == 0 || rd != dist || rs != stride || rr != rank
      || rh != howmany || ((ioalign != rsimd_align) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
        if (dims(i) != rn(i))
          {
            create_new_plan = true;
            break;
          }
    }

  if (create_new_plan)
    {
      rd = dist;
      rs = stride;
      rr = rank;
      rh = howmany;
      rsimd_align = ioalign;
      rn = dims;

      // Note reversal of dimensions for column major storage in FFTW.
      octave_idx_type nn = 1;
      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
        {
          tmp[i] = dims(j);
          nn *= dims(j);
        }

      int plan_flags = 0;
      bool plan_destroys_in = true;

      switch (meth)
        {
        case UNKNOWN:
        case ESTIMATE:
          plan_flags |= FFTW_ESTIMATE;
          plan_destroys_in = false;
          break;
        case MEASURE:
          plan_flags |= FFTW_MEASURE;
          break;
        case PATIENT:
          plan_flags |= FFTW_PATIENT;
          break;
        case EXHAUSTIVE:
          plan_flags |= FFTW_EXHAUSTIVE;
          break;
        case HYBRID:
          if (nn < 8193)
            plan_flags |= FFTW_MEASURE;
          else
            {
              plan_flags |= FFTW_ESTIMATE;
              plan_destroys_in = false;
            }
          break;
        }

      if (ioalign)
        plan_flags &= ~FFTW_UNALIGNED;
      else
        plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
        fftwf_destroy_plan (*cur_plan_p);

      if (plan_destroys_in)
        {
          // Create matrix with the same size and 16-byte alignment as input
          OCTAVE_LOCAL_BUFFER (float, itmp, nn + 32);
          itmp = reinterpret_cast<float *>
            (((reinterpret_cast<ptrdiff_t>(itmp) + 15) & ~ 0xF) +
             ((reinterpret_cast<ptrdiff_t> (in)) & 0xF));

          *cur_plan_p =
            fftwf_plan_many_dft_r2c (rank, tmp, howmany, itmp,
              0, stride, dist, reinterpret_cast<fftwf_complex *> (out),
              0, stride, dist, plan_flags);
        }
      else
        {
          *cur_plan_p =
            fftwf_plan_many_dft_r2c (rank, tmp, howmany,
              (const_cast<float *> (in)),
              0, stride, dist, reinterpret_cast<fftwf_complex *> (out),
              0, stride, dist, plan_flags);
        }

      if (*cur_plan_p == 0)
        (*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}

octave_float_fftw_planner::FftwMethod
octave_float_fftw_planner::do_method (void)
{
  return meth;
}

octave_float_fftw_planner::FftwMethod
octave_float_fftw_planner::do_method (FftwMethod _meth)
{
  FftwMethod ret = meth;
  if (_meth == ESTIMATE || _meth == MEASURE
      || _meth == PATIENT || _meth == EXHAUSTIVE
      || _meth == HYBRID)
    {
      if (meth != _meth)
        {
          meth = _meth;
          if (rplan)
            fftwf_destroy_plan (rplan);
          if (plan[0])
            fftwf_destroy_plan (plan[0]);
          if (plan[1])
            fftwf_destroy_plan (plan[1]);
          rplan = plan[0] = plan[1] = 0;
        }
    }
  else
    ret = UNKNOWN;
  return ret;
}

template <class T>
static inline void
convert_packcomplex_1d (T *out, size_t nr, size_t nc,
                        octave_idx_type stride, octave_idx_type dist)
{
  octave_quit ();

  // Fill in the missing data.

  for (size_t i = 0; i < nr; i++)
    for (size_t j = nc/2+1; j < nc; j++)
      out[j*stride + i*dist] = conj (out[(nc - j)*stride + i*dist]);

  octave_quit ();
}

template <class T>
static inline void
convert_packcomplex_Nd (T *out, const dim_vector &dv)
{
  size_t nc = dv(0);
  size_t nr = dv(1);
  size_t np = (dv.length () > 2 ? dv.numel () / nc / nr : 1);
  size_t nrp = nr * np;
  T *ptr1, *ptr2;

  octave_quit ();

  // Create space for the missing elements.

  for (size_t i = 0; i < nrp; i++)
    {
      ptr1 = out + i * (nc/2 + 1) + nrp*((nc-1)/2);
      ptr2 = out + i * nc;
      for (size_t j = 0; j < nc/2+1; j++)
        *ptr2++ = *ptr1++;
    }

  octave_quit ();

  // Fill in the missing data for the rank = 2 case directly for speed.

  for (size_t i = 0; i < np; i++)
    {
      for (size_t j = 1; j < nr; j++)
        for (size_t k = nc/2+1; k < nc; k++)
          out[k + (j + i*nr)*nc] = conj (out[nc - k + ((i+1)*nr - j)*nc]);

      for (size_t j = nc/2+1; j < nc; j++)
        out[j + i*nr*nc] = conj (out[(i*nr+1)*nc - j]);
    }

  octave_quit ();

  // Now do the permutations needed for rank > 2 cases.

  size_t jstart = dv(0) * dv(1);
  size_t kstep = dv(0);
  size_t nel = dv.numel ();

  for (int inner = 2; inner < dv.length (); inner++)
    {
      size_t jmax = jstart * dv(inner);
      for (size_t i = 0; i < nel; i+=jmax)
        for (size_t j = jstart, jj = jmax-jstart; j < jj;
             j+=jstart, jj-=jstart)
          for (size_t k = 0; k < jstart; k+= kstep)
            for (size_t l = nc/2+1; l < nc; l++)
              {
                T tmp = out[i+ j + k + l];
                out[i + j + k + l] = out[i + jj + k + l];
                out[i + jj + k + l] = tmp;
              }
      jstart = jmax;
    }

  octave_quit ();
}

int
octave_fftw::fft (const double *in, Complex *out, size_t npts,
                  size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftw_plan plan = octave_fftw_planner::create_plan (1, dv, nsamples,
                                                     stride, dist, in, out);

  fftw_execute_dft_r2c (plan, (const_cast<double *>(in)),
                         reinterpret_cast<fftw_complex *> (out));

  // Need to create other half of the transform.

  convert_packcomplex_1d (out, nsamples, npts, stride, dist);

  return 0;
}

int
octave_fftw::fft (const Complex *in, Complex *out, size_t npts,
                  size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftw_plan plan = octave_fftw_planner::create_plan (FFTW_FORWARD, 1, dv,
                                                     nsamples, stride,
                                                     dist, in, out);

  fftw_execute_dft (plan,
        reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
        reinterpret_cast<fftw_complex *> (out));

  return 0;
}

int
octave_fftw::ifft (const Complex *in, Complex *out, size_t npts,
                   size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftw_plan plan = octave_fftw_planner::create_plan (FFTW_BACKWARD, 1, dv,
                                                     nsamples, stride,
                                                     dist, in, out);

  fftw_execute_dft (plan,
        reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
        reinterpret_cast<fftw_complex *> (out));

  const Complex scale = npts;
  for (size_t j = 0; j < nsamples; j++)
    for (size_t i = 0; i < npts; i++)
      out[i*stride + j*dist] /= scale;

  return 0;
}

int
octave_fftw::fftNd (const double *in, Complex *out, const int rank,
                    const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  // Fool with the position of the start of the output matrix, so that
  // creating other half of the matrix won't cause cache problems.

  octave_idx_type offset = (dv.numel () / dv(0)) * ((dv(0) - 1) / 2);

  fftw_plan plan = octave_fftw_planner::create_plan (rank, dv, 1, 1, dist,
                                                     in, out + offset);

  fftw_execute_dft_r2c (plan, (const_cast<double *>(in)),
                        reinterpret_cast<fftw_complex *> (out+ offset));

  // Need to create other half of the transform.

  convert_packcomplex_Nd (out, dv);

  return 0;
}

int
octave_fftw::fftNd (const Complex *in, Complex *out, const int rank,
                    const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftw_plan plan = octave_fftw_planner::create_plan (FFTW_FORWARD, rank,
                                                     dv, 1, 1, dist, in, out);

  fftw_execute_dft (plan,
        reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
        reinterpret_cast<fftw_complex *> (out));

  return 0;
}

int
octave_fftw::ifftNd (const Complex *in, Complex *out, const int rank,
                     const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftw_plan plan = octave_fftw_planner::create_plan (FFTW_BACKWARD, rank,
                                                     dv, 1, 1, dist, in, out);

  fftw_execute_dft (plan,
        reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
        reinterpret_cast<fftw_complex *> (out));

  const size_t npts = dv.numel ();
  const Complex scale = npts;
  for (size_t i = 0; i < npts; i++)
    out[i] /= scale;

  return 0;
}

int
octave_fftw::fft (const float *in, FloatComplex *out, size_t npts,
                  size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftwf_plan plan = octave_float_fftw_planner::create_plan (1, dv, nsamples,
                                                            stride, dist,
                                                            in, out);

  fftwf_execute_dft_r2c (plan, (const_cast<float *>(in)),
                        reinterpret_cast<fftwf_complex *> (out));

  // Need to create other half of the transform.

  convert_packcomplex_1d (out, nsamples, npts, stride, dist);

  return 0;
}

int
octave_fftw::fft (const FloatComplex *in, FloatComplex *out, size_t npts,
                  size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftwf_plan plan = octave_float_fftw_planner::create_plan (FFTW_FORWARD, 1,
                                                            dv, nsamples,
                                                            stride, dist,
                                                            in, out);

  fftwf_execute_dft (plan,
        reinterpret_cast<fftwf_complex *> (const_cast<FloatComplex *>(in)),
        reinterpret_cast<fftwf_complex *> (out));

  return 0;
}

int
octave_fftw::ifft (const FloatComplex *in, FloatComplex *out, size_t npts,
                   size_t nsamples, octave_idx_type stride, octave_idx_type dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts, 1);
  fftwf_plan plan = octave_float_fftw_planner::create_plan (FFTW_BACKWARD, 1,
                                                            dv, nsamples,
                                                            stride, dist,
                                                            in, out);

  fftwf_execute_dft (plan,
        reinterpret_cast<fftwf_complex *> (const_cast<FloatComplex *>(in)),
        reinterpret_cast<fftwf_complex *> (out));

  const FloatComplex scale = npts;
  for (size_t j = 0; j < nsamples; j++)
    for (size_t i = 0; i < npts; i++)
      out[i*stride + j*dist] /= scale;

  return 0;
}

int
octave_fftw::fftNd (const float *in, FloatComplex *out, const int rank,
                    const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  // Fool with the position of the start of the output matrix, so that
  // creating other half of the matrix won't cause cache problems.

  octave_idx_type offset = (dv.numel () / dv(0)) * ((dv(0) - 1) / 2);

  fftwf_plan plan = octave_float_fftw_planner::create_plan (rank, dv, 1, 1,
                                                            dist, in,
                                                            out + offset);

  fftwf_execute_dft_r2c (plan, (const_cast<float *>(in)),
                        reinterpret_cast<fftwf_complex *> (out+ offset));

  // Need to create other half of the transform.

  convert_packcomplex_Nd (out, dv);

  return 0;
}

int
octave_fftw::fftNd (const FloatComplex *in, FloatComplex *out, const int rank,
                    const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftwf_plan plan = octave_float_fftw_planner::create_plan (FFTW_FORWARD,
                                                            rank, dv, 1, 1,
                                                            dist, in, out);

  fftwf_execute_dft (plan,
        reinterpret_cast<fftwf_complex *> (const_cast<FloatComplex *>(in)),
        reinterpret_cast<fftwf_complex *> (out));

  return 0;
}

int
octave_fftw::ifftNd (const FloatComplex *in, FloatComplex *out, const int rank,
                     const dim_vector &dv)
{
  octave_idx_type dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftwf_plan plan = octave_float_fftw_planner::create_plan (FFTW_BACKWARD,
                                                            rank, dv, 1, 1,
                                                            dist, in, out);

  fftwf_execute_dft (plan,
        reinterpret_cast<fftwf_complex *> (const_cast<FloatComplex *>(in)),
        reinterpret_cast<fftwf_complex *> (out));

  const size_t npts = dv.numel ();
  const FloatComplex scale = npts;
  for (size_t i = 0; i < npts; i++)
    out[i] /= scale;

  return 0;
}

#endif