Mercurial > hg > octave-nkf
view scripts/optimization/qp.m @ 7333:66dfb0abd3d3
[project @ 2007-12-21 21:22:43 by jwe]
author | jwe |
---|---|
date | Fri, 21 Dec 2007 21:22:43 +0000 |
parents | a1dbe9d80eee |
children | df9519e9990c |
line wrap: on
line source
## Copyright (C) 2000, 2001, 2004, 2005, 2006, 2007 Gabriele Pannocchia. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{obj}, @var{info}, @var{lambda}] =} qp (@var{x0}, @var{H}, @var{q}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_lb}, @var{A_in}, @var{A_ub}) ## Solve the quadratic program ## @iftex ## @tex ## $$ ## \min_x {1 \over 2} x^T H x + x^T q ## $$ ## @end tex ## @end iftex ## @ifnottex ## ## @example ## min 0.5 x'*H*x + x'*q ## x ## @end example ## ## @end ifnottex ## subject to ## @iftex ## @tex ## $$ ## Ax = b \qquad lb \leq x \leq ub \qquad A_{lb} \leq A_{in} \leq A_{ub} ## $$ ## @end tex ## @end iftex ## @ifnottex ## ## @example ## A*x = b ## lb <= x <= ub ## A_lb <= A_in*x <= A_ub ## @end example ## @end ifnottex ## ## @noindent ## using a null-space active-set method. ## ## Any bound (@var{A}, @var{b}, @var{lb}, @var{ub}, @var{A_lb}, ## @var{A_ub}) may be set to the empty matrix (@code{[]}) if not ## present. If the initial guess is feasible the algorithm is faster. ## ## The value @var{info} is a structure with the following fields: ## @table @code ## @item solveiter ## The number of iterations required to find the solution. ## @item info ## An integer indicating the status of the solution, as follows: ## @table @asis ## @item 0 ## The problem is feasible and convex. Global solution found. ## @item 1 ## The problem is not convex. Local solution found. ## @item 2 ## The problem is not convex and unbounded. ## @item 3 ## Maximum number of iterations reached. ## @item 6 ## The problem is infeasible. ## @end table ## @end table ## @end deftypefn function [x, obj, INFO, lambda] = qp (x0, H, q, A, b, lb, ub, A_lb, A_in, A_ub) if (nargin == 5 || nargin == 7 || nargin == 10) ## Checking the quadratic penalty n = issquare (H); if (n == 0) error ("qp: quadratic penalty matrix not square"); endif n1 = issymmetric (H); if (n1 == 0) ## warning ("qp: quadratic penalty matrix not symmetric"); H = (H + H')/2; endif ## Checking the initial guess (if empty it is resized to the ## right dimension and filled with 0) if (isempty (x0)) x0 = zeros (n, 1); elseif (length (x0) != n) error ("qp: the initial guess has incorrect length"); endif ## Linear penalty. if (length (q) != n) error ("qp: the linear term has incorrect length"); endif ## Equality constraint matrices if (isempty (A) || isempty(b)) n_eq = 0; A = zeros (n_eq, n); b = zeros (n_eq, 1); else [n_eq, n1] = size (A); if (n1 != n) error ("qp: equality constraint matrix has incorrect column dimension"); endif if (length (b) != n_eq) error ("qp: equality constraint matrix and vector have inconsistent dimension"); endif endif ## Bound constraints Ain = zeros (0, n); bin = zeros (0, 1); n_in = 0; if (nargin > 5) if (! isempty (lb)) if (length(lb) != n) error ("qp: lower bound has incorrect length"); else Ain = [Ain; eye(n)]; bin = [bin; lb]; endif endif if (! isempty (ub)) if (length (ub) != n) error ("qp: upper bound has incorrect length"); else Ain = [Ain; -eye(n)]; bin = [bin; -ub]; endif endif endif ## Inequality constraints if (nargin > 7) [dimA_in, n1] = size (A_in); if (n1 != n) error ("qp: inequality constraint matrix has incorrect column dimension"); else if (! isempty (A_lb)) if (length (A_lb) != dimA_in) error ("qp: inequality constraint matrix and lower bound vector inconsistent"); else Ain = [Ain; A_in]; bin = [bin; A_lb]; endif endif if (! isempty (A_ub)) if (length (A_ub) != dimA_in) error ("qp: inequality constraint matrix and upper bound vector inconsistent"); else Ain = [Ain; -A_in]; bin = [bin; -A_ub]; endif endif endif endif ## Now we should have the following QP: ## ## min_x 0.5*x'*H*x + x'*q ## s.t. A*x = b ## Ain*x >= bin ## Discard inequality constraints that have -Inf bounds since those ## will never be active. idx = isinf (bin) & bin < 0; bin(idx) = []; Ain(idx,:) = []; n_in = length (bin); ## Check if the initial guess is feasible. rtol = sqrt (eps); eq_infeasible = (n_eq > 0 && norm (A*x0-b) > rtol*(1+norm (b))); in_infeasible = (n_in > 0 && any (Ain*x0-bin < -rtol*(1+norm (bin)))); info = 0; if (eq_infeasible || in_infeasible) ## The initial guess is not feasible. ## First define xbar that is feasible with respect to the equality ## constraints. if (eq_infeasible) if (rank (A) < n_eq) error ("qp: equality constraint matrix must be full row rank") endif xbar = pinv (A) * b; else xbar = x0; endif ## Check if xbar is feasible with respect to the inequality ## constraints also. if (n_in > 0) res = Ain * xbar - bin; if (any (res < -rtol * (1 + norm (bin)))) ## xbar is not feasible with respect to the inequality ## constraints. Compute a step in the null space of the ## equality constraints, by solving a QP. If the slack is ## small, we have a feasible initial guess. Otherwise, the ## problem is infeasible. if (n_eq > 0) Z = null (A); if (isempty (Z)) ## The problem is infeasible because A is square and full ## rank, but xbar is not feasible. info = 6; endif endif if (info != 6) ## Solve an LP with additional slack variables to find ## a feasible starting point. gamma = eye (n_in); if (n_eq > 0) Atmp = [Ain*Z, gamma]; btmp = -res; else Atmp = [Ain, gamma]; btmp = bin; endif ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)]; lb = [-Inf*ones(n-n_eq,1); zeros(n_in,1)]; ub = []; ctype = repmat ("L", n_in, 1); [P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype); if ((status == 180 || status == 181 || status == 151) && all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp)))) ## We found a feasible starting point if (n_eq > 0) x0 = xbar + Z*P(1:n-n_eq); else x0 = P(1:n); endif else ## The problem is infeasible info = 6; endif endif else ## xbar is feasible. We use it a starting point. x0 = xbar; endif else ## xbar is feasible. We use it a starting point. x0 = xbar; endif endif if (info == 0) ## FIXME -- make maxit a user option. ## The initial (or computed) guess is feasible. ## We call the solver. maxit = 200; [x, lambda, info, iter] = __qp__ (x0, H, q, A, b, Ain, bin, maxit); else iter = 0; x = x0; lambda = []; endif obj = 0.5 * x' * H * x + q' * x; INFO.solveiter = iter; INFO.info = info; else print_usage (); endif endfunction