Mercurial > hg > octave-nkf
view scripts/sparse/treeplot.m @ 14518:67e865f5272c
Added tag release-3-6-1 for changeset ba4d6343524b
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 03 Apr 2012 22:37:50 -0400 |
parents | 11949c9795a0 |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 2005-2012 Ivana Varekova ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} treeplot (@var{tree}) ## @deftypefnx {Function File} {} treeplot (@var{tree}, @var{node_style}, @var{edge_style}) ## Produce a graph of tree or forest. The first argument is vector of ## predecessors, optional parameters @var{node_style} and @var{edge_style} ## define the output style. The complexity of the algorithm is O(n) in ## terms of is time and memory requirements. ## @seealso{etreeplot, gplot} ## @end deftypefn function treeplot (tree, node_style = "ko", edge_style = "r") if (nargin < 1 || nargin > 3 || nargout > 0) print_usage (); endif if (! ismatrix (tree) || rows (tree) != 1 || ! isnumeric (tree) || ! isvector (tree) || any (tree > length (tree))) error ("treeplot: TREE must be a vector of predecessors"); endif ## Verify node_style if (nargin > 1) if (isempty (regexp (node_style, '[ox+*]', 'once'))) node_style = [node_style, "o"]; endif endif ## Make it a row vector. tree = tree(:)'; ## The count of nodes of the graph. num_nodes = length (tree); ## The number of children. num_children = zeros (1, num_nodes+1); for i = 1:num_nodes ## VEC_OF_CHILD is helping vector which is used to speed up the ## choose of descendant nodes. num_children(tree(i)+1) = num_children(tree(i)+1) + 1; endfor pos = 1; start = zeros (1, num_nodes+1); xhelp = zeros (1, num_nodes+1); stop = zeros (1, num_nodes+1); for i = 1:num_nodes+1 start(i) = pos; xhelp(i) = pos; pos += num_children(i); stop(i) = pos; endfor for i = 1:num_nodes vec_of_child(xhelp(tree(i)+1)) = i; xhelp(tree(i)+1) = xhelp(tree(i)+1)+1; endfor ## The number of "parent" (actual) node (it's descendants will be ## browse in the next iteration). par_number = 0; ## The x-coordinate of the left most descendant of "parent node" ## this value is increased in each leaf. left_most = 0; ## The level of "parent" node (root level is num_nodes). level = num_nodes; ## Num_nodes - max_ht is the height of this graph. max_ht = num_nodes; ## Main stack - each item consists of two numbers - the number of ## node and the number it's of parent node on the top of stack ## there is "parent node". stk = [-1, 0]; ## Stack which is use to draw the graph edge (it have to be ## uninterupted line). skelet = 0; ## The top of the stack. while (par_number != -1) if (start(par_number+1) < stop(par_number+1)) idx = vec_of_child(start(par_number+1):stop(par_number+1)-1); else idx = zeros (1, 0); endif ## Add to idx the vector of parent descendants. stk = [stk; [idx', ones(fliplr(size(idx)))*par_number]]; ## Add to stack the records relevant to parent descandant s. if (par_number != 0) skelet = [skelet; ([ones(size(idx))*par_number; idx])(:)]; endif ## If there is not any descendant of "parent node": if (stk(end,2) != par_number) left_most++; x_coordinate_r(par_number) = left_most; max_ht = min (max_ht, level); if (length(stk) > 1 && find ((shift(stk,1)-stk) == 0) > 1 && stk(end,2) != stk(end-1,2)) ## Return to the nearest branching the position to return ## position is the position on the stack, where should be ## started further search (there are two nodes which has the ## same parent node). position = (find ((shift(stk(:,2),1)-stk(:,2)) == 0))(end) + 1; par_number_vec = stk(position:end,2); ## The vector of removed nodes (the content of stack form ## position to end). skelet = [skelet; flipud(par_number_vec)]; level += length (par_number_vec); ## The level have to be decreased. x_coordinate_r(par_number_vec) = left_most; stk(position:end,:) = []; endif ## Remove the next node from "searched branch". stk(end,:) = []; ## Choose new "parent node". par_number = stk(end,1); ## If there is another branch start to search it. if (par_number != -1) skelet = [skelet; stk(end,2); par_number]; y_coordinate(par_number) = level; x_coordinate_l(par_number) = left_most + 1; endif else ## There were descendants of "parent nod" choose the last of ## them and go on through it. level--; par_number = stk(end,1); y_coordinate(par_number) = level; x_coordinate_l(par_number) = left_most + 1; endif endwhile ## Calculate the x coordinates (the known values are the position ## of most left and most right descendants). x_coordinate = (x_coordinate_l + x_coordinate_r) / 2; ## FIXME -- we should probably stuff all the arguments into a cell ## array and make a single call to plot here so we can avoid ## setting the hold state... hold_is_on = ishold (); unwind_protect ## Plot graph nodes. plot (x_coordinate, y_coordinate, node_style); ## Helping command - usable for plotting edges skelet = [skelet; 0]; ## Draw graph edges. idx = find (skelet == 0); hold ("on"); ## Plot each tree component in one loop. for i = 2:length(idx) ## Tree component start. istart = idx(i-1) + 1; ## Tree component end. istop = idx(i) - 1; if (istop - istart < 1) continue; endif plot (x_coordinate(skelet(istart:istop)), y_coordinate(skelet(istart:istop)), edge_style); endfor ## Set axis and graph size. axis ([0.5, left_most+0.5, max_ht-0.5, num_nodes-0.5], "nolabel"); unwind_protect_cleanup if (! hold_is_on) hold ("off"); endif end_unwind_protect endfunction %!demo %! clf; %! treeplot ([2 4 2 0 6 4 6]); %! % Plot a simple tree plot %!demo %! clf; %! treeplot ([2 4 2 0 6 4 6], "b+", "g"); %! % Plot a simple tree plot defining the edge and node styles