Mercurial > hg > octave-nkf
view scripts/linear-algebra/issymmetric.m @ 11542:695141f1c05c ss-3-3-55
snapshot 3.3.55
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 15 Jan 2011 04:53:04 -0500 |
parents | fd0a3ac60b0e |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 1996-2011 John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} issymmetric (@var{x}) ## @deftypefnx {Function File} {} issymmetric (@var{x}, @var{tol}) ## Return true if @var{x} is a symmetric matrix within the tolerance specified ## by @var{tol}. The default tolerance is zero (uses faster code). ## Matrix @var{x} is considered symmetric if ## @code{norm (@var{x} - @var{x}.', Inf) / norm (@var{x}, Inf) < @var{tol}}. ## @seealso{ishermitian, isdefinite} ## @end deftypefn ## Author: A. S. Hodel <scotte@eng.auburn.edu> ## Created: August 1993 ## Adapted-By: jwe function retval = issymmetric (x, tol = 0) if (nargin < 1 || nargin > 2) print_usage (); endif retval = isnumeric (x) && issquare (x); if (retval) if (tol == 0) retval = all ((x == x.')(:)); else norm_x = norm (x, inf); retval = norm_x == 0 || norm (x - x.', inf) / norm_x <= tol; endif endif endfunction %!assert(issymmetric (1)); %!assert(!(issymmetric ([1, 2]))); %!assert(issymmetric ([])); %!assert(issymmetric ([1, 2; 2, 1])); %!assert(!(issymmetric ("test"))); %!assert(issymmetric ([1, 2.1; 2, 1.1], 0.2)); %!assert(issymmetric ([1, 2i; 2i, 1])); %!assert(!(issymmetric ("t"))); %!assert(!(issymmetric (["te"; "et"]))); %!error issymmetric ([1, 2; 2, 1], 0, 0); %!error issymmetric (); %!test %! s.a = 1; %! assert(!(issymmetric (s)));