Mercurial > hg > octave-nkf
view scripts/linear-algebra/onenormest.m @ 11542:695141f1c05c ss-3-3-55
snapshot 3.3.55
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 15 Jan 2011 04:53:04 -0500 |
parents | fd0a3ac60b0e |
children | c792872f8942 |
line wrap: on
line source
## Copyright (C) 2007-2011 Regents of the University of California ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{A}, @var{t}) ## @deftypefnx {Function File} {[@var{est}, @var{v}, @var{w}, @var{iter}] =} onenormest (@var{apply}, @var{apply_t}, @var{n}, @var{t}) ## ## Apply Higham and Tisseur's randomized block 1-norm estimator to ## matrix @var{A} using @var{t} test vectors. If @var{t} exceeds 5, then ## only 5 test vectors are used. ## ## If the matrix is not explicit, e.g., when estimating the norm of ## @code{inv (@var{A})} given an LU factorization, @code{onenormest} applies ## @var{A} and its conjugate transpose through a pair of functions ## @var{apply} and @var{apply_t}, respectively, to a dense matrix of size ## @var{n} by @var{t}. The implicit version requires an explicit dimension ## @var{n}. ## ## Returns the norm estimate @var{est}, two vectors @var{v} and ## @var{w} related by norm ## @code{(@var{w}, 1) = @var{est} * norm (@var{v}, 1)}, ## and the number of iterations @var{iter}. The number of ## iterations is limited to 10 and is at least 2. ## ## References: ## @itemize ## @item ## N.J. Higham and F. Tisseur, @cite{A Block Algorithm ## for Matrix 1-Norm Estimation, with an Application to 1-Norm ## Pseudospectra}. SIMAX vol 21, no 4, pp 1185-1201. ## @url{http://dx.doi.org/10.1137/S0895479899356080} ## ## @item ## N.J. Higham and F. Tisseur, @cite{A Block Algorithm ## for Matrix 1-Norm Estimation, with an Application to 1-Norm ## Pseudospectra}. @url{http://citeseer.ist.psu.edu/223007.html} ## @end itemize ## ## @seealso{condest, norm, cond} ## @end deftypefn ## Code originally licensed under ## ## Copyright (c) 2007, Regents of the University of California ## All rights reserved. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions ## are met: ## ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## ## * Redistributions in binary form must reproduce the above ## copyright notice, this list of conditions and the following ## disclaimer in the documentation and/or other materials provided ## with the distribution. ## ## * Neither the name of the University of California, Berkeley nor ## the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior ## written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF ## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ## SUCH DAMAGE. ## Author: Jason Riedy <ejr@cs.berkeley.edu> ## Keywords: linear-algebra norm estimation ## Version: 0.2 function [est, v, w, iter] = onenormest (varargin) if (size (varargin, 2) < 1 || size (varargin, 2) > 4) print_usage (); endif default_t = 5; itmax = 10; if (ismatrix (varargin{1})) n = size (varargin{1}, 1); if n != size (varargin{1}, 2), error ("onenormest: matrix must be square"); endif apply = @(x) varargin{1} * x; apply_t = @(x) varargin{1}' * x; if (size (varargin) > 1) t = varargin{2}; else t = min (n, default_t); endif issing = isa (varargin {1}, "single"); else if (size (varargin, 2) < 3) print_usage(); endif n = varargin{3}; apply = varargin{1}; apply_t = varargin{2}; if (size (varargin) > 3) t = varargin{4}; else t = default_t; endif issing = isa (varargin {3}, "single"); endif ## Initial test vectors X. X = rand (n, t); X = X ./ (ones (n,1) * sum (abs (X), 1)); ## Track if a vertex has been visited. been_there = zeros (n, 1); ## To check if the estimate has increased. est_old = 0; ## Normalized vector of signs. S = zeros (n, t); if (issing) myeps = eps ("single"); X = single (X); else myeps = eps; endif for iter = 1 : itmax + 1 Y = feval (apply, X); ## Find the initial estimate as the largest A*x. [est, ind_best] = max (sum (abs (Y), 1)); if (est > est_old || iter == 2) w = Y(:,ind_best); endif if (iter >= 2 && est < est_old) ## No improvement, so stop. est = est_old; break; endif est_old = est; S_old = S; if (iter > itmax), ## Gone too far. Stop. break; endif S = sign (Y); ## Test if any of S are approximately parallel to previous S ## vectors or current S vectors. If everything is parallel, ## stop. Otherwise, replace any parallel vectors with ## rand{-1,+1}. partest = any (abs (S_old' * S - n) < 4*eps*n); if (all (partest)) ## All the current vectors are parallel to old vectors. ## We've hit a cycle, so stop. break; endif if (any (partest)) ## Some vectors are parallel to old ones and are cycling, ## but not all of them. Replace the parallel vectors with ## rand{-1,+1}. numpar = sum (partest); replacements = 2*(rand (n,numpar) < 0.5) - 1; S(:,partest) = replacements; endif ## Now test for parallel vectors within S. partest = any ((S' * S - eye (t)) == n); if (any (partest)) numpar = sum (partest); replacements = 2*(rand (n,numpar) < 0.5) - 1; S(:,partest) = replacements; endif Z = feval (apply_t, S); ## Now find the largest non-previously-visted index per ## vector. h = max (abs (Z),2); [mh, mhi] = max (h); if (iter >= 2 && mhi == ind_best) ## Hit a cycle, stop. break; endif [h, ind] = sort (h, 'descend'); if (t > 1) firstind = ind(1:t); if (all (been_there(firstind))) ## Visited all these before, so stop. break; endif ind = ind (!been_there (ind)); if (length (ind) < t) ## There aren't enough new vectors, so we're practically ## in a cycle. Stop. break; endif endif ## Visit the new indices. X = zeros (n, t); for zz = 1 : t X(ind(zz),zz) = 1; endfor been_there (ind (1 : t)) = 1; endfor ## The estimate est and vector w are set in the loop above. The ## vector v selects the ind_best column of A. v = zeros (n, 1); v(ind_best) = 1; endfunction %!demo %! N = 100; %! A = randn(N) + eye(N); %! [L,U,P] = lu(A); %! nm1inv = onenormest(@(x) U\(L\(P*x)), @(x) P'*(L'\(U'\x)), N, 30) %! norm(inv(A), 1) %!test %! N = 10; %! A = ones (N); %! [nm1, v1, w1] = onenormest (A); %! [nminf, vinf, winf] = onenormest (A', 6); %! assert (nm1, N, -2*eps); %! assert (nminf, N, -2*eps); %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps) %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps) %!test %! N = 10; %! A = ones (N); %! [nm1, v1, w1] = onenormest (@(x) A*x, @(x) A'*x, N, 3); %! [nminf, vinf, winf] = onenormest (@(x) A'*x, @(x) A*x, N, 3); %! assert (nm1, N, -2*eps); %! assert (nminf, N, -2*eps); %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps) %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps) %!test %! N = 5; %! A = hilb (N); %! [nm1, v1, w1] = onenormest (A); %! [nminf, vinf, winf] = onenormest (A', 6); %! assert (nm1, norm (A, 1), -2*eps); %! assert (nminf, norm (A, inf), -2*eps); %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps) %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps) ## Only likely to be within a factor of 10. %!test %! N = 100; %! A = rand (N); %! [nm1, v1, w1] = onenormest (A); %! [nminf, vinf, winf] = onenormest (A', 6); %! assert (nm1, norm (A, 1), -.1); %! assert (nminf, norm (A, inf), -.1); %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps) %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)