Mercurial > hg > octave-nkf
view scripts/signal/freqz.m @ 11542:695141f1c05c ss-3-3-55
snapshot 3.3.55
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 15 Jan 2011 04:53:04 -0500 |
parents | fd0a3ac60b0e |
children | c792872f8942 |
line wrap: on
line source
## Copyright (C) 1994-2011 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole") ## Return the complex frequency response @var{h} of the rational IIR filter ## whose numerator and denominator coefficients are @var{b} and @var{a}, ## respectively. The response is evaluated at @var{n} angular frequencies ## between 0 and ## @ifnottex ## 2*pi. ## @end ifnottex ## @tex ## $2\pi$. ## @end tex ## ## @noindent ## The output value @var{w} is a vector of the frequencies. ## ## If the fourth argument is omitted, the response is evaluated at ## frequencies between 0 and ## @ifnottex ## pi. ## @end ifnottex ## @tex ## $\pi$. ## @end tex ## ## If @var{n} is omitted, a value of 512 is assumed. ## ## If @var{a} is omitted, the denominator is assumed to be 1 (this ## corresponds to a simple FIR filter). ## ## For fastest computation, @var{n} should factor into a small number of ## small primes. ## ## @deftypefnx {Function File} {@var{h} =} freqz (@var{b}, @var{a}, @var{w}) ## Evaluate the response at the specific frequencies in the vector @var{w}. ## The values for @var{w} are measured in radians. ## ## @deftypefnx {Function File} {[@dots{}] =} freqz (@dots{}, @var{Fs}) ## Return frequencies in Hz instead of radians assuming a sampling rate ## @var{Fs}. If you are evaluating the response at specific frequencies ## @var{w}, those frequencies should be requested in Hz rather than radians. ## ## @deftypefnx {Function File} {} freqz (@dots{}) ## Plot the pass band, stop band and phase response of @var{h} rather ## than returning them. ## @end deftypefn ## Author: jwe ??? function [h_r, f_r] = freqz (b, a, n, region, Fs) if (nargin < 1 || nargin > 5) print_usage (); elseif (nargin == 1) ## Response of an FIR filter. a = n = region = Fs = []; elseif (nargin == 2) ## Response of an IIR filter n = region = Fs = []; elseif (nargin == 3) region = Fs = []; elseif (nargin == 4) Fs = []; if (! ischar (region) && ! isempty (region)) Fs = region; region = []; endif endif if (isempty (b)) b = 1; endif if (isempty (a)) a = 1; endif if (isempty (n)) n = 512; endif if (isempty (region)) if (isreal (b) && isreal (a)) region = "half"; else region = "whole"; endif endif if (isempty (Fs)) if (nargout == 0) Fs = 2; else Fs = 2*pi; endif endif a = a(:); b = b(:); if (! isscalar (n)) ## Explicit frequency vector given w = f = n; if (nargin == 4) ## Sampling rate Fs was specified w = 2*pi*f/Fs; endif k = max (length (b), length (a)); hb = polyval (postpad (b, k), exp (j*w)); ha = polyval (postpad (a, k), exp (j*w)); else ## polyval(fliplr(P),exp(jw)) is O(p n) and fft(x) is O(n log(n)), ## where p is the order of the polynomial P. For small p it ## would be faster to use polyval but in practice the overhead for ## polyval is much higher and the little bit of time saved isn't ## worth the extra code. k = max (length (b), length (a)); if (k > n/2 && nargout == 0) ## Ensure a causal phase response. n = n * 2 .^ ceil (log2 (2*k/n)); endif if (strcmp (region, "whole")) N = n; else N = 2*n; endif f = Fs * (0:n-1).' / N; pad_sz = N*ceil (k/N); b = postpad (b, pad_sz); a = postpad (a, pad_sz); hb = zeros (n, 1); ha = zeros (n, 1); for i = 1:N:pad_sz hb = hb + fft (postpad (b(i:i+N-1), N))(1:n); ha = ha + fft (postpad (a(i:i+N-1), N))(1:n); endfor endif h = hb ./ ha; if (nargout != 0) ## Return values and don't plot. h_r = h; f_r = f; else ## Plot and don't return values. freqz_plot (f, h); endif endfunction %!test # correct values and fft-polyval consistency %! # butterworth filter, order 2, cutoff pi/2 radians %! b = [0.292893218813452 0.585786437626905 0.292893218813452]; %! a = [1 0 0.171572875253810]; %! [h,w] = freqz(b,a,32); %! assert(h(1),1,10*eps); %! assert(abs(h(17)).^2,0.5,10*eps); %! assert(h,freqz(b,a,w),10*eps); # fft should be consistent with polyval %!test # whole-half consistency %! b = [1 1 1]/3; # 3-sample average %! [h,w] = freqz(b,1,32,'whole'); %! assert(h(2:16),conj(h(32:-1:18)),20*eps); %! [h2,w2] = freqz(b,1,16,'half'); %! assert(h(1:16),h2,20*eps); %! assert(w(1:16),w2,20*eps); %!test # Sampling frequency properly interpreted %! b = [1 1 1]/3; a = [1 0.2]; %! [h,f] = freqz(b,a,16,320); %! assert(f,[0:15]'*10,10*eps); %! [h2,f2] = freqz(b,a,[0:15]*10,320); %! assert(f2,[0:15]*10,10*eps); %! assert(h,h2.',20*eps); %! [h3,f3] = freqz(b,a,32,'whole',320); %! assert(f3,[0:31]'*10,10*eps);