Mercurial > hg > octave-nkf
view scripts/control/hinf_ctr.m @ 3381:69b167451491
[project @ 1999-12-15 20:48:10 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 20:48:45 +0000 |
parents | 8dd4718801fd |
children | 10f21f7ccc7f |
line wrap: on
line source
## Copyright (C) 1996 Auburn University. All Rights Reserved ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File } {@var{K} =} hinf_ctr(@var{dgs}, @var{F}, @var{H}, @var{Z}, @var{g}) ## Called by @code{hinfsyn} to compute the H_inf optimal controller. ## ## @strong{Inputs} ## @table @var ## @item dgs ## data structure returned by @code{is_dgkf} ## @item F, H ## feedback and filter gain (not partitioned) ## @item g ## final gamma value ## @end table ## @strong{Outputs} ## controller K (system data structure) ## ## Do not attempt to use this at home; no argument checking performed. ## @end deftypefn function K = hinf_ctr(dgs,F,H,Z,g) ## A. S. Hodel August 1995 ## Revised by Kai P Mueller April 1998 to solve the general H_infinity ## problem using unitary transformations Q (on w and z) ## and non-singular transformations R (on u and y). nw = dgs.nw; nu = dgs.nu; nz = dgs.nz; ny = dgs.ny; d22nz = dgs.Dyu_nz; B1 = dgs.Bw; B2 = dgs.Bu; C1 = dgs.Cz; C2 = dgs.Cy; C = [C1; C2]; D11 = dgs.Dzw; D12 = dgs.Dzu; D21 = dgs.Dyw; D22 = dgs.Dyu; A = dgs.A; Ru = dgs.Ru; Ry = dgs.Ry; nout = nz + ny; nin = nw + nu; nstates = size(A, 1); F11 = F(1:(nw-ny),:); F12 = F((nw-ny+1):nw,:); F2 = F((nw+1):nin,:); H11 = H(:,1:(nz-nu)); H12 = H(:,(nz-nu+1):nz); H2 = H(:,(nz+1):nout); ## D11 partitions D1111 = D11(1:(nz-nu),1:(nw-ny)); D1112 = D11(1:(nz-nu),(nw-ny+1):nw); D1121 = D11((nz-nu+1):nz,1:(nw-ny)); D1122 = D11((nz-nu+1):nz,(nw-ny+1):nw); ## D11ik may be the empty matrix, don't calculate with empty matrices [nd1111,md1111] = size(D1111); md1112 = length(D1112); md1121 = length(D1121); if ((nd1111 == 0) || (md1112 == 0)) d11hat = -D1122; else xx = inv(g*g*eye(nz-nu) - D1111*D1111'); d11hat = -D1121*D1111'*xx*D1112 - D1122; endif if (md1112 == 0) d21hat = eye(ny); elseif (nd1111 == 0) d21hat = chol(eye(ny) - D1112'*D1112/g/g); else xx = inv(g*g*eye(nz-nu) - D1111*D1111'); xx = eye(ny) - D1112'*xx*D1112; d21hat = chol(xx); endif if (md1121 == 0) d12hat = eye(nu); elseif (md1111 == 0) d12hat = chol(eye(nu) - D1121*D1121'/g/g)'; else xx = inv(g*g*eye(nw-ny) - D1111'*D1111); xx = eye(nu)-D1121*xx*D1121'; d12hat = chol(xx)'; endif b2hat = (B2+H12)*d12hat; c2hat = -d21hat*(C2+F12)*Z; b1hat = -H2 + (b2hat/d12hat)*d11hat; c1hat = F2*Z + (d11hat/d21hat)*c2hat; ahat = A + H*C + (b2hat/d12hat)*c1hat; ## rescale controller by Ru and Ry b1hat = b1hat/Ry; c1hat = Ru\c1hat; bhat = [b1hat, b2hat]; chat = [c1hat; c2hat]; dhat = [Ru\d11hat/Ry, Ru\d12hat; d21hat/Ry, 0*d11hat']; ## non-zero D22 is a special case if (d22nz) if (rank(eye(nu) + d11hat*D22) < nu) error(" *** cannot compute controller for D22 non-zero."); endif d22new = [D22, zeros(ny,ny); zeros(nu,nu), 0*D22']; xx = inv(eye(nu+ny) + d22new*dhat); mhat = inv(eye(nu+ny) + dhat*d22new); ahat = ahat - bhat*((eye(nu+ny)-xx)/dhat)*chat; bhat = bhat*xx; chat = mhat*chat; dhat = dhat*xx; endif K = ss2sys(ahat,bhat(:,1:ny),chat(1:nu,:),dhat(1:nu,1:ny)); endfunction