Mercurial > hg > octave-nkf
view scripts/control/is_controllable.m @ 3381:69b167451491
[project @ 1999-12-15 20:48:10 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 20:48:45 +0000 |
parents | 8dd4718801fd |
children | 10f21f7ccc7f |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File } {[@var{retval}, @var{U}] =} is_controllable (@var{sys}@{, @var{tol}@}) ## @deftypefnx {Function File } {[@var{retval}, @var{U}] =} is_controllable (@var{a}@{, @var{b} ,@var{tol}@}) ## Logical check for system controllability. ## ## @strong{Inputs} ## @table @var ## @item sys ## system data structure ## @item a, b ## @var{n} by @var{n}, @var{n} by @var{m} matrices, respectively ## @item tol ## optional roundoff paramter. default value: @code{10*eps} ## @end table ## ## @strong{Outputs} ## @table @var ## @item retval ## Logical flag; returns true (1) if the system @var{sys} or the ## pair (@var{a},@var{b}) is controllable, whichever was passed as input arguments. ## @item U ## U is an orthogonal basis of the controllable subspace. ## @end table ## ## @strong{Method} ## Controllability is determined by applying Arnoldi iteration with ## complete re-orthogonalization to obtain an orthogonal basis of the ## Krylov subspace ## @example ## span ([b,a*b,...,a^@{n-1@}*b]). ## @end example ## The Arnoldi iteration is executed with @code{krylov} if the system has a single input; otherwise a block Arnoldi iteration is performed with @code{krylovb}. ## ## @strong{See also} ## @code{is_observable}, @code{is_stabilizable}, @code{is_detectable}, ## @code{krylov}, @code{krylovb} ## ## @end deftypefn ## See also: size, rows, columns, length, is_matrix, is_scalar, is_vector ## is_observable, is_stabilizable, is_detectable, krylov, krylovb function [retval,U] = is_controllable (a, b, tol) ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993. ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 for packed systems deftol = 1; # assume default tolerance if(nargin < 1 | nargin > 3) usage("[retval,U] = %s\n\t%s", "is_controllable(a {, b ,tol})", ... "is_controllable(sys{,tol})"); elseif(is_struct(a)) ## system structure passed. sys = sysupdate(a,"ss"); [a,bs] = sys2ss(sys); if(nargin > 2) usage("[retval,U] = is_controllable(sys{,tol})"); elseif(nargin == 2) tol = b; % get tolerance deftol = 0; endif b = bs; else ## a,b arguments sent directly. if(nargin < 2) usage("[retval,U] = is_controllable(a {, b ,tol})"); else deftol = 1; endif endif ## check for default tolerance if(deftol) tol = 1000*eps; endif ## check tol dimensions if( !is_scalar(tol) ) error("is_controllable: tol(%dx%d) must be a scalar", ... rows(tol),columns(tol)); elseif( !is_sample(tol) ) error("is_controllable: tol=%e must be positive",tol); endif ## check dimensions compatibility n = is_square (a); [nr, nc] = size (b); if (n == 0 | n != nr | nc == 0) warning("is_controllable: a=(%dx%d), b(%dx%d)",rows(a),columns(a),nr,nc); retval = 0; else ## call block-krylov subspace routine to get an orthogonal basis ## of the controllable subspace. [U,H,Ucols] = krylov(a,b,n,tol,1); retval = (Ucols == n); endif endfunction