Mercurial > hg > octave-nkf
view scripts/control/is_stabilizable.m @ 3381:69b167451491
[project @ 1999-12-15 20:48:10 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 20:48:45 +0000 |
parents | 8dd4718801fd |
children | 10f21f7ccc7f |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File } {[@var{retval}, @var{U}] =} is_stabilizable (@var{sys}@{, @var{tol}@}) ## @deftypefnx {Function File } {[@var{retval}, @var{U}] =} is_stabilizable (@var{a}@{, @var{b} ,@var{tol}@}) ## Logical check for system stabilizability (i.e., all unstable modes are controllable). ## ## ## Test for stabilizability is performed via an ordered Schur decomposition ## that reveals the unstable subspace of the system @var{A} matrix. ## ## Returns @code{retval} = 1 if the system, @code{a}, is stabilizable, if the pair ## (@code{a}, @code{b}) is stabilizable, or 0 if not. ## @code{U} = orthogonal basis of controllable subspace. ## ## Controllable subspace is determined by applying Arnoldi iteration with ## complete re-orthogonalization to obtain an orthogonal basis of the ## Krylov subspace. ## @example ## span ([b,a*b,...,a^ b]). ## @end example ## tol is a roundoff paramter, set to 200*eps if omitted. ## @end deftypefn ## See also: size, rows, columns, length, is_matrix, is_scalar, is_vector ## is_observable, is_stabilizable, is_detectable function [retval,U] = is_stabilizable (a, b, tol) ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993. ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems if(nargin < 1) usage("[retval,U] = is_stabilizable(a {, b ,tol})"); elseif(is_struct(a)) ## sustem passed. if(nargin == 2) tol = b; % get tolerance elseif(nargin > 2) usage("[retval,U] = is_stabilizable(sys{,tol})"); endif [a,b] = sys2ss(sys); else ## a,b arguments sent directly. if(nargin > 3) usage("[retval,U] = is_stabilizable(a {, b ,tol})"); endif endif if(exist("tol")) [retval,U] = is_controllable(a,b,tol); else [retval,U] = is_controllable(a,b); tol = 1e2*rows(b)*eps; endif if( !retval & columns(U) > 0) ## now use an ordered Schur decomposition to get an orthogonal ## basis of the unstable subspace... n = rows(a); [ua,s] = schur(-(a+eye(n)*tol),'A'); k = sum( real(eig(a)) >= 0 ); # count unstable poles if( k > 0 ) ua = ua(:,1:k); ## now see if span(ua) is contained in span(U) retval = (norm(ua - U*U'*ua) < tol); else retval = 1; # all poles stable endif endif endfunction