Mercurial > hg > octave-nkf
view scripts/control/lqe.m @ 3381:69b167451491
[project @ 1999-12-15 20:48:10 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 20:48:45 +0000 |
parents | 8dd4718801fd |
children | 1a8e2c0d627a |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z}) ## Construct the linear quadratic estimator (Kalman filter) for the ## continuous time system ## @iftex ## @tex ## $$ ## {dx\over dt} = A x + B u ## $$ ## $$ ## y = C x + D u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## dx ## -- = a x + b u ## dt ## ## y = c x + d u ## @end example ## ## @end ifinfo ## where @var{w} and @var{v} are zero-mean gaussian noise processes with ## respective intensities ## ## @example ## sigw = cov (w, w) ## sigv = cov (v, v) ## @end example ## ## The optional argument @var{z} is the cross-covariance ## @code{cov (@var{w}, @var{v})}. If it is omitted, ## @code{cov (@var{w}, @var{v}) = 0} is assumed. ## ## Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)} ## ## The following values are returned: ## ## @table @var ## @item k ## The observer gain, ## @iftex ## @tex ## $(A - K C)$ ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{k}@var{c}) ## @end ifinfo ## is stable. ## ## @item p ## The solution of algebraic Riccati equation. ## ## @item e ## The vector of closed loop poles of ## @iftex ## @tex ## $(A - K C)$. ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{k}@var{c}). ## @end ifinfo ## @end table ## @end deftypefn function [k, p, e] = lqe (a, g, c, sigw, sigv, zz) ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993. if ( (nargin != 5) && (nargin != 6)) error ("lqe: invalid number of arguments"); endif ## The problem is dual to the regulator design, so transform to lqr ## call. if (nargin == 5) [k, p, e] = lqr (a', c', g*sigw*g', sigv); else [k, p, e] = lqr (a', c', g*sigw*g', sigv, g*zz); endif k = k'; endfunction