Mercurial > hg > octave-nkf
view scripts/control/tzero.m @ 3381:69b167451491
[project @ 1999-12-15 20:48:10 by jwe]
author | jwe |
---|---|
date | Wed, 15 Dec 1999 20:48:45 +0000 |
parents | 8dd4718801fd |
children | 10f21f7ccc7f |
line wrap: on
line source
## Copyright (C) 1996 Auburn University. All Rights Reserved ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} tzero (@var{a}, @var{b}, @var{c}, @var{d}@{, @var{opt}@}) ## @deftypefnx {Function File} {} tzero (@var{sys}@{,@var{opt}@}) ## Compute transmission zeros of a continuous ## @example ## . ## x = Ax + Bu ## y = Cx + Du ## @end example ## or discrete ## @example ## x(k+1) = A x(k) + B u(k) ## y(k) = C x(k) + D u(k) ## @end example ## system. ## @strong{Outputs} ## @table @var ## @item zer ## transmission zeros of the system ## @item gain ## leading coefficient (pole-zero form) of SISO transfer function ## returns gain=0 if system is multivariable ## @end table ## @strong{References} ## @enumerate ## @item Emami-Naeini and Van Dooren, Automatica, 1982. ## @item Hodel, "Computation of Zeros with Balancing," 1992 Lin. Alg. Appl. ## @end enumerate ## @end deftypefn function [zer, gain] = tzero(A,B,C,D) ## R. Bruce Tenison July 4, 1994 ## A. S. Hodel Aug 1995: allow for MIMO and system data structures ## get A,B,C,D and Asys variables, regardless of initial form if(nargin == 4) Asys = ss2sys(A,B,C,D); elseif( (nargin == 1) && (! is_struct(A))) usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)"); elseif(nargin != 1) usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)"); else Asys = A; [A,B,C,D] = sys2ss(Asys); endif Ao = Asys; # save for leading coefficient siso = is_siso(Asys); digital = is_digital(Asys); # check if it's mixed or not ## see if it's a gain block if(isempty(A)) zer = []; gain = D; return; endif ## First, balance the system via the zero computation generalized eigenvalue ## problem balancing method (Hodel and Tiller, Linear Alg. Appl., 1992) Asys = zgpbal(Asys); [A,B,C,D] = sys2ss(Asys); # balance coefficients meps = 2*eps*norm([A, B; C, D],'fro'); Asys = zgreduce(Asys,meps); [A, B, C, D] = sys2ss(Asys); # ENVD algorithm if(!isempty(A)) ## repeat with dual system Asys = ss2sys(A', C', B', D'); Asys = zgreduce(Asys,meps); ## transform back [A,B,C,D] = sys2ss(Asys); Asys = ss2sys(A', C', B', D'); endif zer = []; # assume none [A,B,C,D] = sys2ss(Asys); if( !isempty(C) ) [W,r,Pi] = qr([C, D]'); [nonz,ztmp] = zgrownorm(r,meps); if(nonz) ## We can now solve the generalized eigenvalue problem. [pp,mm] = size(D); nn = rows(A); Afm = [A , B ; C, D] * W'; Bfm = [eye(nn), zeros(nn,mm); zeros(pp,nn+mm)]*W'; jdx = (mm+1):(mm+nn); Af = Afm(1:nn,jdx); Bf = Bfm(1:nn,jdx); zer = qz(Af,Bf); endif endif mz = length(zer); [A,B,C,D] = sys2ss(Ao); # recover original system ## compute leading coefficient if ( (nargout == 2) && siso) n = rows(A); if ( mz == n) gain = D; elseif ( mz < n ) gain = C*(A^(n-1-mz))*B; endif else gain = []; endif endfunction